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ABSTRACT

Static program analysis aims to automatically reason about certain properties a given pro-
gram might exhibit under all possible executions without actually observing such executions.
Static pointer analysis is a major subcategory that focuses on the objects that program
expressions might point to during program executions. The evolution of programming lan-
guages has led to the addition of many abstraction layers that, as a result, have made any
automatic reasoning about a program a challenging task at best or an infeasible one at
worst. Thus, any practical static pointer analysis algorithm has to compromise and aim to
approximate results in some way—either computing more or less than what is actually true.
This dissertation shows how we can obtain precise yet also scalable static pointer analysis al-
gorithms by carefully differentiating policies for different parts of the program. Furthermore,
since a static pointer analysis algorithm with global soundness guarantees and meaningful
results throughout is not realistic, we show that it is possible to design analyses that offer
strong guarantees on the soundness of the results for specific parts of the program.
Pointer analyses in the past introduced the concept of context-sensitivity in order to tackle the
ever growing problem of imprecision versus scalability. Context is used to annotate analysis
components so that the analysis can be more precise without at the same time sacrificing
scalability. We show beneficial ways to combine different context flavors for different parts
of the program without paying the cost that a naive combination would incur.
Another attempt at producing precise yet scalable analyses leads us to an introspective
analysis. We employ a common adaptive pattern in which a cheap imprecise analysis is run
first so various metrics can be gathered, and then a more precise (and costly) analysis can
be used only in parts of the program—under the assumption that more precise handling of
the rest would only incur performance penalties.
Subsequently, we shift our attention to an analysis that under-approximates results (instead
of the norm of over-approximating) so that it might report less but can guarantee those
properties to always hold. We build upon observations on the properties that such analyses
have in order to apply a specialized data structure that speeds up our algorithm by nearly
two orders of magnitude.
Finally, in our last contribution, we revisit an analysis formulation that over-approximates
results to create an analysis algorithm that is truly sound but at the same time highly effi-
cient. Our analysis is conservative, guaranteeing soundness even in the presence of arbitrary
unknown code, but avoids wasting any work on computations that will later be invalidated
due to soundness concerns.

SUBJECT AREA: Programming Languages, Static Analysis

KEYWORDS: Pointer Analysis; Alias Analysis; Object-Oriented Programming; Precision;
Performance; Context-Sensitivity





ΠΕΡΙΛΗΨΗ

Η στατική ανάλυση στοχεύει στον αυτόματο συμπερασμό ιδιοτήτων που κάποιο πρόγραμμα μπο-

ρεί να επιδείξει σε κάθε πιθανή εκτέλεση, χωρίς στην πράξη να εκτελείται. Η στατική ανάλυση

δεικτών αποτελεί μια μεγάλη υποκατηγορία της που επικεντρώνεται στα δυναμικά αντικείμενα

που δύνανται να ‘δείξουν’ οι εκφράσεις ενός προγράμματος σε κάποια εκτέλεση του. Η εξέλιξη

των γλωσσών προγραμματισμού με την πάροδο των χρόνων οδήγησε στην προσθήκη πολλών

επιπέδων αφαίρεσης, τα οποία σαν αποτέλεσμα έχουν ο αυτόματος συμπερασμός για κάποιο

πρόγραμμα να αποτελεί τουλάχιστον μία πρόκληση αν όχι και μία αδύνατη προσπάθεια. Συνε-

πώς, κάθε πρακτικός αλγόριθμος στατικής ανάλυσης πρέπει να στοχεύσει σε μια εκτίμηση των

πραγματικών αποτελεσμάτων με κάποια μορφή ανακρίβειας—είτε υπολογίζοντας περισσότερα

είτε λιγότερα.

Σε αυτή τη διατριβή παρουσιάζουμε πώς μπορούμε να σχεδιάσουμε ακριβείς και συνάμα απο-

δοτικούς αλγορίθμους ανάλυσης δεικτών εφαρμόζοντας διαφορετικές πολιτικές σε διαφορετικά

σημεία του προγράμματος. Συμπληρωματικά, δεδομένου ότι ένας αλγόριθμος ανάλυσης δει-

κτών με βεβαιώσεις εγκυρότητας για όλα τα σημεία του προγράμματος καθώς και πρακτικά

αποτελέσματα δεν αποτελεί ρεαλιστική κατεύθυνση, δείχνουμε πώς μπορούμε να σχεδιάσουμε

αναλύσεις με ισχυρές βεβαιώσεις εγκυρότητας για συγκεκριμένα κομμάτια ενός προγράμματος.

Προηγούμενοι αλγόριθμοι για ανάλυση δεικτών εισήγαγαν την έννοια των συμφραζομένων

(context) για να αντιμετωπίσουν το αυξανόμενο πρόβλημα της ανακρίβειας έναντι της απο-

δοτικότητας. Τα συμφραζόμενα χρησιμοποιούνται για να επαυξήσουν στοιχεία της ανάλυσης

ώστε η ανάλυση να καταφέρει να είναι πιο ακριβής χωρίς ταυτόχρονα να πρέπει να κάνει θυσίες

στον τομέα της αποδοτικότητας. Παρουσιάζουμε επωφελείς τρόπους συνδυασμού διάφορων ει-

δών συμφραζομένων σε διαφορετικά σημεία του προγράμματος, χωρίς αυτοί οι συνδυασμοί να

επιφέρουν το κόστος που θα παρουσίαζε μία αφελής προσέγγιση.

Μία δεύτερη απόπειρα για δημιουργία αναλύσεων που παρουσιάζουν υψηλή ακρίβεια και αποδο-

τικότητα μας οδηγεί σε μια ανάλυση ενδοσκόπησης (introspection). Εφαρμόζουμε ένα σύνηθες

μοτίβο στο οποίο μια φτηνή ανακριβής ανάλυση εφαρμόζεται πρώτη ώστε να συλλέξει διάφορες

μετρικές για το πρόγραμμα, και στη συνέχεια μια δεύτερη πιο ακριβής (και ακριβή) ανάλυση

μπορεί να εφαρμοστεί μόνο σε συγκεκριμένα σημεία του προγράμματος—υπό την υπόθεση ότι

η πιο ακριβής μεταχείριση των υπολοίπων θα είχε μόνο αρνητικά αποτελέσματα στην συνολική

απόδοση.

Εν συνεχεία, μετατοπίζουμε την προσοχή μας προς μια ανάλυση που υπό-εκτιμά τα αποτελέσμα-

τα της (σε αντίθεση με το σύνηθες των αναλύσεων που υπολογίζουν μία υπέρ-εκτίμηση). Με

αυτή την αντιμετώπιση, η ανάλυση μας αναφέρει λιγότερα αποτελέσματα αλλά μπορεί να παρέχει

ισχυρές βεβαιώσεις ότι αυτά θα ισχύουν πάντα. Βασιζόμενοι πάνω σε παρατηρήσεις για τις ιδι-

ότητες που παρουσιάζουν αναλύσεις αυτού του είδους, εφαρμόζουμε μια ειδική δομή δεδομένων

η οποία επιφέρει επιταχύνσεις στον αλγόριθμο μας σχεδόν κατά δύο τάξεις μεγέθους.

Τέλος, στην τέταρτη συνεισφορά της διατριβής, επιστρέφουμε ξανά στην οικογένεια αναλύσεων



που υπερεκτιμούν τα αποτελέσματα τους. Ο στόχος μας είναι η δημιουργία ενός αρκετά αποδο-

τικού αλγορίθμου που όντως παράγει έγκυρα αποτελέσματα χωρίς περιορισμούς στο υποκείμενο

πρόγραμμα. Κατά συνέπεια, αυτό μας οδηγεί σε μία συντηρητική ανάλυση, που μπορεί να πα-

ρέχει βεβαιώσεις εγκυρότητας ακόμα και υπό την παρουσία άγνωστου κώδικα, αλλά ταυτόχρονα

αποφεύγει την σπατάλη υπολογισμών σε δεδομένα που αργότερα θα χρειαστεί να ανατραπούν

για την διατήρηση των βεβαιώσεων αυτών.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Γλώσσες Προγραμματισμού, Στατική Ανάλυση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ανάλυση Δεικτών, Ανάλυση Συνωνύμων, Αντικειμενοστρεφής Προ-

γραμματισμός, Ακρίβεια, Απόδοση
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ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ

ΔΙΑΤΡΙΒΗΣ

Η διατριβή αυτή ανήκει στον ευρύτερο τομέα της στατικής ανάλυσης προγραμμάτων, η οποία

στοχεύει στον αυτόματο συμπερασμό των ιδιοτήτων που παρουσιάζει κάποιο πρόγραμμα, με

βάση την εξέταση του πηγαίου του κώδικα (ή κάποιας αντίστοιχης ενδιάμεσης αναπαράστασης),

αλλά δίχως να απαιτείται κάποια πραγματική εκτέλεση του. Η δουλειά μας στη διατριβή αυτή

επικεντρώνεται σε μια μεγάλη υποκατηγορία της στατικής ανάλυσης, αυτή της ανάλυσης δει-

κτών. Μία ανάλυση δεικτών στοχεύει στο να υπολογίσει τα σύνολα αντικειμένων στα οποία

μπορεί να ‘δείξει’ κάθε έκφραση του προγράμματος (π.χ. τοπική μεταβλητή, πεδίο, κτλ.) σε

όλες τις πιθανές εκτελέσεις του.

Σαν αποτέλεσμα, κάθε πρακτικός αλγόριθμος που στοχεύει να παρέχει ουσιαστικά αποτελέσμα-

τα αναγκάζεται να κάνει έναν πρώτο συμβιβασμό: χρειάζεται να κατασκευάσει κάποιο αφηρη-

μένο μοντέλο της μνήμης, όπου εικονικά αντικείμενα αναπαριστούν (μία ή περισσότερες) δια-

κριτές δεσμεύσεις πραγματικών αντικειμένων. ΄Ενα κλασικό παράδειγμα αυτού είναι η δέσμευση

αντικειμένων από κάποια εντολή μέσα σε μία δομή επανάληψης. Η συνηθισμένη αντιμετώπιση

από κάποιον αλγόριθμο ανάλυσης δεικτών είναι να θεωρηθούν όλα τα αντικείμενα που εν δυνάμει

θα δεσμευτούν από την ίδια εντολή, σαν ένα μοναδικό, αφηρημένο αντικείμενο. Αυτό αποτελεί

μία (από τις πολλές) πήγη ανακρίβειας στα αποτελέσματα της όποιας ανάλυσης. Ταυτόχρονα

όμως, συμβιβασμοί σαν αυτόν, αν και οδηγούν σε εκτιμήσεις της συμπεριφοράς ενός προγράμ-

ματος και όχι σε απόλυτα αποτελέσματα, επιτρέπουν στις αναλύσεις να κάνουν πολύπλοκους

αυτόματους συμπερασμούς. Συμπερασμούς που βοηθούν σε πληθώρα τομέων όπως η μηχανικά

υποβοηθούμενη κατανόηση του προγράμματος, η εύρεση σφαλμάτων, και η βελτιστοποίηση της

απόδοσης του προγράμματος.

Τα παραπάνω φανερώνουν ένα από τα βαθύτερα προβλήματα κάθε αλγορίθμου στατικής ανάλυ-

σης δεικτών. Δηλαδή ότι, συχνά, ο σχεδιασμός ενός τέτοιου αλγορίθμου είναι αποτέλεσμα

ισορροπίας μεταξύ θεμάτων ακριβείας και κλιμάκωσης. Είναι σχετικά απλό μία ανάλυση να επι-

κεντρωθεί στον υπολογισμό αποτελεσμάτων υψηλής ακρίβειας, θυσιάζοντας την γενική απόδο-

ση του αλγορίθμου. Αντίστοιχα, είναι δυνατόν να σχεδιαστούν πολύ αποδοτικοί αλγόριθμοι, οι

οποίοι όμως θα υπολογίζουν μεγάλες εκτιμήσεις των (πραγματικών) αποτελεσμάτων οδηγώντας

σε τεράστια ανακρίβεια.

Η διατριβή αυτή στοχεύει στην αντιμετώπιση του παραπάνω προβλήματος, με την κύρια θέση

της να συνοψίζεται ώς εξής:

Είναι δυνατόν να σχεδιαστούν αλγόριθμοι στατικής ανάλυσης δεικτών που παρουσι-

άζουν υψηλή ακρίβεια αλλά και κλιμάκωση, εφαρμόζοντας προσεκτικά διαφορετικές

πολιτικές σε διαφορετικά σημεία του προγράμματος. Συμπληρωματικά, είναι δυνα-

τόν να σχεδιαστούν αναλύσεις που προσφέρουν ισχυρές εγγυήσεις εγκυρότητας

των αποτελεσμάτων, αλλά για στοχευμένα κομμάτια του προγράμματος.

Στη συνέχεια, θα παρουσιάσουμε διάφορες τεχνικές για την υλοποίηση αποδοτικών αλγορίθ-



μων ανάλυσης δεικτών, στο περιβάλλον της γλώσσας προγραμματισμού Java, προσαρμόζοντας
προσεκτικά την στρατηγική του κάθε αλγορίθμου σε διαφορετικά σημεία του προγράμματος.

Επιπροσθέτως, θα παρουσιάσουμε δύο αλγορίθμους αμυντικής φύσης που στοχεύουν στον

υπολογισμό αποτελεσμάτων υψηλής εμπιστοσύνης, ακόμη και εν μέσω ‘εχθρικού’ ή άγνωστου

κώδικα.

Βασικές ΄Εννοιες της Στατικής Ανάλυσης Δεικτών

Πριν κάνουμε μια συνοπτική αναφορά των επιστημονικών συνεισφορών της διατριβής αυτής, είναι

απαραίτητο να γίνει μια μικρή εισαγωγή σε βασικές έννοιες της στατικής ανάλυσης (δεικτών),

που αποτελούν το επιστημονικό και τεχνικό υπόβαθρο της δουλειάς μας.

Πλατφόρμα Υλοποίησης & Γλώσσα υπό Ανάλυση. Το μεγαλύτερο μέρος της

δουλειάς που θα παρουσιάσουμε στη συνέχεια, είναι υλοποιημένο στην πλατφόρμα Doop[16],
χρησιμοποιώντας τη δηλωτική γλώσσα προγραμματισμού Datalog. Το Doop αποτελεί εδώ

και χρόνια μία καλά εδραιωμένη πλατφόρμα ανάπτυξης αλγορίθμων στατικής ανάλυσης δει-

κτών, προσφέροντας μία πληθώρα αναλύσεων που στοχεύουν προγράμματα Java. Περισσότερες

λεπτομέρειες δίνονται στο Κεφάλαιο 2.11.

Αξίζει να σημειωθεί ότι, αν και οι ιδέες και οι αλγόριθμοι που εξερευνώνται παρακάτω επικε-

ντρώνονται γύρω από την ανάλυση προγραμμάτων Java, είναι αρκετά πιθανή μία γενίκευση τους,

σε μικρότερο ή μεγαλύτερο βαθμό, και σε άλλες γλώσσες προγραμματισμού που προσφέρουν

παρόμοια χαρακτηριστικά και ακολουθούν παρόμοια μοντέλα/παραδείγματα.

Χρήση Συμφραζομένων. ΄Οπως προαναφέρθηκε, η υλοποίηση κάθε πολύπλοκου αλγορίθ-

μου ανάλυσης δεικτών σύντομα καταλήγει σε μία προσπάθεια εξισορρόπησης μεταξύ ακρίβειας

και απόδοσης. Στο παρελθόν, η επιστημονική κοινότητα έχει επεκτείνει το οπλοστάσιο της

με διάφορες έννοιες και τεχνικές προς διαχείριση αυτής της κατάστασης. Μία τέτοια τεχνική,

που στοχεύει στην καταπολέμηση της ανακρίβειας των αποτελεσμάτων, ελπίζοντας χωρίς ταυ-

τόχρονα επιβάρυνση της απόδοσης, είναι αυτή των συμφραζομένων (context). Η χρήση των

συμφραζομένων (πρακτικά επιπλέον πληροφορίας) γίνεται επαυξάνοντας στοιχεία της εκάστοτε

ανάλυσης (π.χ., τοπικές μεταβλητές, πεδία και μεθόδους) ώστε η ανάλυση να καταφέρει να τα

χειριστεί με μεγαλύτερη ακρίβεια.

Η κεντρική ιδέα είναι ότι η ανάλυση θα διαφοροποιήσει τον χειρισμό στοιχείων του προγράμ-

ματος όταν αυτά συνδυάζονται με κάποια συμφραζόμενα, ενώ θα τα χειριστεί ομοιογενώς όταν

συνδυάζονται με κάποια άλλα. Για παράδειγμα, μία ανάλυση μπορεί να εξετάσει διαφορετικά

κάποια μεθόδου όταν η κλήση της έγινε μέσα στη μέθοδο Α, μέσα στη μέθοδο Β ή οπουδήποτε

αλλού (δηλαδή παρουσιάζοντας τρεις διαφορετικές τιμές συμφραζομένων).

Δύο βασικές κατηγορίες συμφραζομένων έχουν χρησιμοποιηθεί ευρέως στο παρελθόν: τα συμ-

φραζόμενα σημείων-κλήσης (που οδηγούν στις λεγόμενες call-site sensitive αναλύσεις) όπου

τα συμφραζόμενα δομούνται από εντολές κλήσης μέσα στον κώδικα του προγράμματος, και τα

συμφραζόμενα αντικειμένων (που οδηγούν στις λεγόμενες object sensitive αναλύσεις) όπου τα

συμφραζόμενα δομούνται από τα αφηρημένα αντικείμενα-παραλήπτες πάνω στα οποία εφαρμόζο-

νται οι τυχόν κλήσεις συναρτήσεων. Περισσότερες λεπτομέρειες δίνονται στο Κεφάλαιο 2.2.



‘May’ έναντι ‘Must’ Αναλύσεων. ΄Οπως αναφέραμε στην αρχή, ο στόχος κάθε αλγορίθ-

μου στατικής ανάλυσης είναι ο αυτόματος συμπερασμός για κάποιο σύνολο συμπεριφορών που

δύναται να επιδείξει ένα πρόγραμμα σε όλες τις πιθανές εκτελέσεις του. Μια τέτοια προσπάθεια

είναι ένα μη-αποφασίσιμο πρόβλημα για τα περισσότερα σύνολα συμπεριφορών παρά για τα πιο

τετριμμένα από αυτά (για ένα τυχαίο πρόγραμμα προς ανάλυση). Κατά συνέπεια, κάθε πρακτι-

κός αλγόριθμος αναγκάζεται να κάνει κάποια εκτίμηση του συνόλου των συμπεριφορών προς

μία από τις δύο εξής κατευθύνσεις: είτε θα υπολογίσει μία υπέρ-εκτίμηση των αποτελεσμάτων

και θα αναφέρει όλες τις πιθανές συμπεριφορές του προγράμματος καθώς και κάποιες που δεν

είναι δυνατόν να προκύψουν ποτέ, είτε θα υπολογίσει μία υπό-εκτίμηση και θα αναφέρει μόνο

ένα υποσύνολο των πιθανών συμπεριφορών. Μία αδρή κατηγοριοποίηση των αναλύσεων μπο-

ρεί να γίνει κάτω από αυτό το πρίσμα σε may-αναλύσεις (που αναφέρουν υπερεκτιμήσεις της

πραγματικότητας) και σε must-αναλύσεις (που αναφέρουν υποεκτιμήσεις της πραγματικότητας).

Περισσότερα στο Κεφάλαιο 2.6.

Εγκυρότητα Αποτελεσμάτων. ΄Ενας θεωρητικός όρος που συχνά χρησιμοποιείται για

να χαρακτηρίσει έναν αλγόριθμο στατικής ανάλυσης είναι αυτός της εγκυρότητας. Με απλά

λόγια, λέμε ότι ένας αλγόριθμος είναι έγκυρος όταν τα αποτελέσματα που υπολογίζει συνάδουν

με τους αρχικούς ισχυρισμούς του. Για παράδειγμα, μία may-ανάλυση δεικτών ισχυρίζεται ότι

σκοπεύει να υπολογίσει μία υπερεκτίμηση του συνόλου των αντικειμένων στα οποία μπορεί να

δείξει κάθε έκφραση ενός προγράμματος, σε κάθε πιθανή εκτέλεση του. Αν δεν λείπει κάποιο

ζευγάρι ‘έκφραση/αντικείμενο’, που θα μπορούσε πραγματικά να συμβεί στο πρόγραμμα, από

τα αποτελέσματα της ανάλυσης, τότε ο αλγόριθμος χαρακτηρίζεται από εγκυρότητα. ΄Ετσι, μία

τετριμμένα έγκυρη, αλλά και παντελώς άχρηστη, may-ανάλυση δεικτών είναι μία που υπολογίζει

το καρτεσιανό γινόμενο κάθε έκφρασης του προγράμματος με κάθε αφηρημένο αντικείμενο.

Ποικίλοι παράγοντες οδηγούν τους περισσότερους αλγορίθμους may-ανάλυσης δεικτών στο να

θυσιάζουν την εγκυρότητα σε κάποιο βαθμό ώστε να καταφέρουν να διατηρήσουν κάποιο ποσο-

στό κλιμάκωσης. Μια πιο αναλυτική συζήτηση γύρω από το θέμα της εγκυρότητας ακολουθεί

στα Κεφάλαια 2.7-2.9.

Δομή Διατριβής και Επιστημονικές Συνεισφορές

Το περιεχόμενο της διατριβής δομείται σε εννέα κεφάλαια. Το πρώτο κεφάλαιο δίνει μία σύντομη

αναφορά του γενικού χώρου της στατικής ανάλυσης δεικτών, εδραιώνει την κεντρική θέση της

διατριβής καθώς και τις επιστημονικές συνεισφορές της, και τέλος, παρουσιάζει την δόμηση που

θα ακολουθηθεί στη συνέχεια του κειμένου.

Το δεύτερο κεφάλαιο περιέχει μία σύντομη περιγραφή χρήσιμων και απαραίτητων εννοιών, τε-

χνικών και εργαλείων από την υπάρχουσα επιστημονική βιβλιογραφία, που αποτελούν την υπο-

κείμενη βάση για την δουλειά μας.

Υβριδικές Αναλύσεις Συμφραζομένων. Τα συμφραζόμενα αντικειμένων εισήχθησαν

το 2002 από την Milanova [106] ως εναλλακτική των συμφραζομένων σημείων-κλήσης. Από

τότε υπάρχει πληθώρα ενδείξεων ότι αποτελούν τη βέλτιστη επιλογή είδους συμφραζομένων,

όσον αφορά προγράμματα εκφρασμένα σε αντικειμενοστρεφείς γλώσσες, εξασφαλίζοντας υψηλή



ακρίβεια με χαμηλότερο συγκριτικά κόστος. Τόσο μεγάλη ήταν η επιτυχία τους που έχουν

πρακτικά αντικαταστήσει την κλασική εναλλακτική των σημείων-κλήσης. Παρ΄ όλα αυτά, τα

συμφραζόμενα σημείων-κλήσης δεν είναι πάντα υποδεέστερα καθώς υπάρχουν συγκεκριμένα

χαρακτηριστικά γλωσσών και μοτίβα προγραμματισμού που ευνοούν αυτή την επιλογή.

Συνεπώς, δεν είναι παράλογη μία προσέγγιση όπου και τα δύο είδη συμφραζομένων συνδυ-

άζονται, ομοιογενώς, με κάπως αφελή τρόπο, σε κάθε σημείο του προγράμματος στοχεύοντας

ώστε τα οφέλη στην ακρίβεια να είναι ακόμα μεγαλύτερα. ΄Οντως, ένας τέτοιος συνδυασμός

έχει σαν αποτέλεσμα κάποια βελτίωση στον τομέα της ακρίβειας, αλλά στις περισσότερες των

περιπτώσεων μία τέτοια βελτίωση συνοδεύεται με ένα απαγορευτικά υψηλό κόστος.

Απόρροια αυτής της παρατήρησης είναι η πρώτη μας επιστημονική συνεισφορά, που παρουσιάζε-

ται στο τρίτο κεφάλαιο. Εκεί περιγράφουμε μία προσπάθεια προς έναν πιο εκλεπτυσμένο συν-

δυασμό των δύο ειδών συμφραζομένων. Η υβριδική μας προσέγγιση οδηγεί σε μία οικογένεια

αναλύσεων όπου τα διαφορετικά είδη συμφραζομένων συνδυάζονται μόνο σε συγκεκριμένα ση-

μεία του προγράμματος, ώστε η ακρίβεια της ανάλυσης να έχει τα οφέλη της ύπαρξης όλων των

ειδών χωρίς όμως να χρειάζεται να πληρώσει και το αντίστοιχο κόστος.

Πιο συγκεκριμένα, η κεντρική ιδέα των υβριδικών αλγορίθμων μας έγκειται στη χρήση των

συμφραζομένων αντικειμένων σαν το κυρίαρχο είδος, για την ανάλυση αντικειμενοστρεφών

χαρακτηριστικών του προγράμματος στα οποία και προσφέρουν τα περισσότερα οφέλη, και τον

συνδυασμό τους με την πιο κλασική εναλλακτική των συμφραζομένων σημείων-κλήσης εκεί που

τα πρώτα υστερούν. Το πιο χαρακτηριστικό τέτοιο σημείο προγράμματος είναι η κλήση στατικών

συναρτήσεων, όπου και δεν υπάρχει η κατάλληλη πληροφορία που χρειάζονται τα συμφραζόμενα

αντικειμένων. Οι κλασικοί αλγόριθμοι ανάλυσης δεικτών αντιμετωπίζουν το πρόβλημα αυτό

μεταφέροντας πληροφορία από το πιο πρόσφατο κατάλληλο σημείο (που μπορεί να απέχει από

το σημείο της στατικής κλήσης), με την ελπίδα ότι η πληροφορία αυτή θα αποβεί χρήσιμη ξανά

στο μέλλον. Στο ενδιάμεσο όμως, η επιπλέον αυτή πληροφορία προσφέρει ελάχιστα στη γενική

ακρίβεια του αλγορίθμου ενώ η ύπαρξη της δεν έρχεται χωρίς (κάποιες φορές βαρύ) κόστος.

Μία υβριδική αντιμετώπιση θα επιλέξει για τα σημεία αυτά (και μόνο) την χρήση συμφραζομένων

σημείων-κλήση, τα οποία είναι ικανά να βελτιώσουν την τοπική ακρίβεια της ανάλυσης χωρίς να

την επιβαρύνουν σημαντικά.

Σαν αποτέλεσμα, αυτός ο επιλεκτικός συνδυασμός συμφραζομένων οδηγεί σε αναλύσεις ση-

μαντικά ανώτερες όχι μόνο συγκριτικά με αυτές που ακολουθούν κάποιο αφελή συνδυασμό

συμφραζομένων, αλλά και ακόμα σε σχέση με τις κλασικές, ‘κανονικές’, μη-υβριδικές ανα-

λύσεις. Αυτό προκύπτει συμπερασματικά με τη συλλογή εκτεταμένων πειραματικών δεδομένων

από μεγάλα προγράμματα Java. Για παράδειγμα, σε σύγκριση με μία αρκετά διαδεδομένη και

χρήσιμη ανάλυση που χρησιμοποιεί συμφραζόμενα αντικειμένων μήκους δύο, η προσέγγιση μας

προσφέρει επιταχύνσεις της τάξης του 1.53x αλλά και καλύτερη ακρίβεια.

Ανάλυση Ενδοσκόπησης. Το τέταρτο κεφάλαιο παρουσιάζει τη δεύτερη επιστημονική

συνεισφορά μας, γύρω από την προσπάθεια των αλγορίθμων ανάλυσης δεικτών να επιτύχουν

καλή απόδοση και κλιμάκωση χωρίς να εγκαταλείψουν την ακρίβεια των αποτελεσμάτων. ΄Ομως,

είναι συχνό φαινόμενο στο χώρο αυτό, οι αναλύσεις να βρίσκονται σε ένα εκ των δύο άκρων

του φάσματος: είτε έχουν αρκετή ακρίβεια ώστε το σύνολο των δεδομένων υπό ανάλυση να

παραμένει διαχειρίσιμο και σαν αποτέλεσμα να επιτυγχάνουν μία εντυπωσιακή κλιμάκωση, είτε



γρήγορα εκτροχιάζονται στο πρώτο σημάδι σημαντικής ανακρίβειας και καταλήγουν να είναι

τάξεις μεγέθους πιο κοστοβόρες σε σχέση με το αναμενόμενο με βάση το μέγεθος του αναλυ-

όμενου προγράμματος.

Προς την αντιμετώπιση αυτού του ζητήματος κινείται και η προσέγγιση μας σε αυτό το κεφάλαιο,

προτείνοντας μία ανάλυση ενδοσκόπησης που απαρτίζεται από δύο βήματα. Η προσέγγιση αυτή

επιτρέπει στην ανάλυση να παρουσιάζει μία ομοιόμορφη κλιμάκωση σε μεγάλα προγράμματα

Java, εξαλείφοντας τα προβληματικά, πιθανά φαινόμενα απόδοσης, έχοντας μόνο ένα μικρό

αρνητικό αντίκτυπο στην τελική ακρίβεια.

Η ανάλυσή μας εφαρμόζει ένα γνωστό μοτίβο: πρώτα εκτελεί μία ανάλυση που δεν χρησιμοποιεί

συμφραζόμενα, και άρα είναι ανακριβής αλλά και φτηνή και γρήγορη, και στη συνέχεια, με

βάση τα δεδομένα που συλλέχθηκαν στην πρώτη φάση, εκτελεί μία πιο εκλεπτυσμένη ανάλυση

(δηλαδή, με χρήση κάποιου είδους συμφραζομένων) αλλά μόνο για συγκεκριμένα σημεία του

προγράμματος. Η κατεύθυνση αυτή ευελπιστεί ότι η επιπλέον ακρίβεια στα σημεία αυτά δεν θα

είναι τελικά απαγορευτική για την συνολική απόδοση του αλγορίθμου. ΄Αρα, η πρόκληση του

όλου εγχειρήματος βρίσκεται στην κατάλληλη επιλογή αυτών των σημείων. Δείχνουμε ότι μία

πειθαρχημένη προσέγγιση μπορεί να προβεί αρκετά αποτελεσματική, επιφέροντας κλιμάκωση με

σημαντικές βελτιώσεις στην απόδοση σε προγράμματα που στο παρελθόν δεν ήταν δυνατόν να

αναλυθούν με ακρίβεια.

Στο κεφάλαιο αυτό, παρουσιάζουμε διάφορες μετρικές για την αξιολόγηση της πληροφορίας από

την πρώτη φάση, και στη συνέχεια δύο ευριστικές για την μετέπειτα επιλογή των κατάλληλων

σημείων του προγράμματος που θα αναλυθούν με μεγαλύτερη ακρίβεια στη δεύτερη φάση.

Συλλέγοντας αρκετά πειραματικά δεδομένα, επιβεβαιώνουμε τα οφέλη μίας ανάλυσης ενδο-

σκόπησης. Εξερευνούμε τις πιθανές απώλειες σε ακρίβεια αλλά και τις βελτιώσεις σε απόδο-

ση και κλιμάκωση, δοκιμάζοντας διαφορετικές παραμέτρους στις μετρικές και ευριστικές μας.

Τελικά, εξακριβώνουμε ότι, ακόμα και με παραμέτρους που στοχεύουν σε υψηλή ακρίβεια, η

ανάλυση μας είναι αποτελεσματική στην διαχείριση προβληματικών περιπτώσεων, που προηγου-

μένως ήταν αδύνατον να αναλυθούν χωρίς τρομακτική απώλεια ακρίβειας. Αυτά τα πειραματικά

συμπεράσματα εδραιώνουν την εμπιστοσύνη μας στον ισχυρισμό ότι οι αναλύσεις συμφραζο-

μένων μπορούν να χρησιμοποιηθούν ευρέως και όχι απλά μεμονωμένα σε εκείνες τις περιπτώσεις

που ‘δουλεύουν αρκετά καλά’.

Στη συνέχεια της διατριβής, στρέφουμε την προσοχή μας σε αναλύσεις που επικεντρώνονται

στον υπολογισμό αποτελεσμάτων τα οποία συνοδεύονται με μεγάλη εμπιστοσύνη. Αν και αυτό

οδηγεί σε συντηρητικές, αμυντικές αναλύσεις, συχνά απρόθυμες να προβούν σε νέους συμπε-

ρασμούς, όταν τελικά αναφέρουν κάποιο αποτέλεσμα το κάνουν με ισχυρή βεβαιότητα στην

εγκυρότητα του.

Must-Ανάλυση Συνωνύμων - ΄Ενα Λογικό Μοντέλο. Το πέμπτο κεφάλαιο, στο

οποίο περιγράφεται η τρίτη επιστημονική συνεισφορά μας, αρχίζει μία εξερεύνηση προς μία δια-

φορετική κατεύθυνση. Πρώτον, αντί για μία ανάλυση δεικτών, παρουσιάζουμε μία ανάλυση

συνωνύμων (aliases). Μία ανάλυση αυτού του είδους έχει σκοπό τον υπολογισμό των εκ-

φράσεων ενός προγράμματος που αποτελούν συνώνυμα, δηλαδή δείχνουν στο ίδιο αντικείμενο

στη μνήμη. Οι αναλύσεις συνωνύμων συνδέονται στενά με τις αναλύσεις δεικτών, αλλά έχουν



και βασικές διαφορές. Δεύτερον, η ανάλυση που προτείνουμε ανήκει στην οικογένεια των must-
αναλύσεων, υπολογίζει δηλαδή μία υποεκτίμηση της πραγματικότητας. Αυτό συνεπάγεται ότι,

μία τέτοια ανάλυση αποτυγχάνει να υπολογίσει κάποια ισχύοντα ζευγάρια συνωνύμων, αλλά

αυτά τα οποία τελικά θα υπολογίσει είναι σίγουρο ότι ισχύουν.

Οι ισχυρές βεβαιώσεις που συνοδεύουν μία ανάλυση αυτού του είδους, καθιστούν τα αποτε-

λέσματα της ιδανικά για αρκετές εφαρμογές: (1) είναι σημαντικά για πληθώρα βελτιστοποι-

ήσεων σε μεταγλωττιστές, (2) μπορούν να βελτιώσουν την ακρίβεια προγραμμάτων για τον

έλεγχο σφαλμάτων, για παράδειγμα, ανιχνευτές μη-τερματισμού ή λάθους δεικτοδότησης (null-
reference) σε εκφράσεις του προγράμματος, (3) μπορούν να χρησιμοποιηθούν σαν δομικά στοι-

χεία πιο σύνθετων και πολύπλοκων αναλύσεων, και (4) μπορούν να προβούν ανεκτίμητα στην

άμεση κατανόηση του προγράμματος από τον προγραμματιστή.

Για να καταφέρει μία ανάλυση να επιδείξει τόσο υψηλή εμπιστοσύνη στα αποτελέσματα της,

χρειάζεται να σέβεται την ροή του προγράμματος, να διατηρεί σύνολα αποτελεσμάτων ξεχωριστά

για κάθε σημείο του προγράμματος, και να μεταφέρει σε επόμενα σημεία μόνο όποιο υποσύνολο

της πληροφορίας συνεχίζει να ισχύει. Με μία πρώτη ματιά, μία τέτοια προσέγγιση φαντάζει

αυτονόητη, αλλά οι περισσότερες (may-) αναλύσεις δεικτών δεν κάνουν αυτή την επιλογή καθώς

κάτι τέτοιο προσφέρει λίγο στην ακρίβεια τους και ταυτόχρονα επιβαρύνει αρκετά την απόδοση

τους. Στην περίπτωση μίας αμυντικής ανάλυσης όμως, αυτή η κατεύθυνση είναι παραπάνω από

απαραίτητη.

΄Ετσι, αρχικά, στο πέμπτο κεφάλαιο παρουσιάζουμε ένα μινιμαλιστικό μοντέλο της ανάλυσης

μας, εκφρασμένο στη δηλωτική γλώσσα Datalog. Το μοντέλο είναι αρκετά εκλεπτυσμένο για να

περιγράψει τα κύρια χαρακτηριστικά που πρέπει να διαθέτει μία must-ανάλυση συνωνύμων, αλλά

ταυτόχρονα και αρκετά απλό ώστε να μπορούμε να επικεντρωθούμε στην ουσία της ανάλυσης

και όχι στους πολύπλοκους τρόπους με τους οποίους αλληλεπιδρούν τα διάφορα στοιχεία της

γλώσσας που αναλύουμε.

Επιπροσθέτως, αξίζει να σημειωθεί ότι το μοντέλο μας παρουσιάζει μία μη συμβατική χρήση

των συμφραζομένων. Οι κλασικές αναλύσεις εφαρμόζουν τα συμφραζόμενα σε μία προσπάθεια

για βελτίωση της ακρίβειας, δηλαδή σαν ένα επιπλέον, θετικό αλλά προαιρετικό στοιχείο. Η

ανάλυση μας χρησιμοποιεί τα συμφραζόμενα σαν ένα εργαλείο εξασφάλισης της εγκυρότητας των

αποτελεσμάτων. ΄Οποτε χρειάζεται να εξερευνήσει πέρα από τα τοπικά όρια μίας συνάρτησης, το

κάνει επεκτείνοντας τα υπάρχοντα συμφραζόμενα, στο μέτρο που κάτι τέτοιο επιτρέπεται από τις

παραμέτρους της ανάλυσης. ΄Οταν κάτι τέτοιο δεν είναι πια δυνατόν, σταματάει κάθε προσπάθεια

για συμπερασμούς καθώς αυτοί θα οδηγούσαν σε μη έγκυρα αποτελέσματα. Συνεπώς, στην

προσέγγιση μας τα συμφραζόμενα αποτελούν αναπόσπαστο κομμάτι του μοντέλου, επιτρέποντας

τους συμπερασμούς της ανάλυσης να υπερβούν τα στενά όρια κάθε συνάρτησης.

΄Ενα ακόμη θετικό στοιχείο της μοντελοποίησης μας είναι το γεγονός ότι η απουσία κομματιών

του υπό-ανάλυση προγράμματος (π.χ., κώδικα βιβλιοθηκών) δεν έχει κάποιο αρνητικό αντίκτυπο

στην συνολική εγκυρότητα της ανάλυσης. Η παρουσία πιθανώς επιπλέον κώδικα οδηγεί στο

συμπερασμό ακόμα περισσότερων αποτελεσμάτων, χωρίς όμως κάτι τέτοιο να ακυρώνει τους

προηγούμενους υπολογισμούς της ανάλυσης.

Must-Ανάλυση Συνωνύμων - Ειδικές Δομές Δεδομένων. Η προσεκτική παρα-



τήρηση του παραπάνω μοντέλου αποκαλύπτει διάφορα σημαντικά χαρακτηριστικά μίας must-
ανάλυσης συνωνύμων, αλλά και τις ανάγκες που πρέπει να καλύψει κάθε πιθανή υλοποίηση.

Σαν αποτέλεσμα, στο έκτο κεφάλαιο παρουσιάζουμε μία ειδική δομή δεδομένων, η οποία αξιοποι-

ώντας αυτές τις παρατηρήσεις επιφέρει σημαντικές βελτιώσεις στην απόδοση και την κλιμάκωση

της ανάλυσης.

Πιο συγκεκριμένα, η πρώτη παρατήρηση είναι ότι όταν μία must-ανάλυση υπολογίζει την πληρο-

φορία συνωνύμων, στην πράξη διατηρεί μία σχέση ισοδυναμίας.
1
Για παράδειγμα, αν η ανάλυση

υπολογίσει ότι οι μεταβλητές x και y αποτελούν συνώνυμα, και το ίδιο αντίστοιχα και οι με-

ταβλητές y και z, τότε πρέπει αυτομάτως να συμπεριλάβει και το ζευγάρι {x με z} (καθώς

και όλα τα συμμετρικά, {y με x}, {z με y}, και {z με x}). Μία ρητή αναπαράσταση όλων των

ζευγαριών μπορεί να επιφέρει σημαντική επιβάρυνση στην απόδοση του αλγορίθμου, ειδικά όταν

αυτό συνδυαστεί και με την επόμενη παρατήρηση.

Η δεύτερη παρατήρηση έχει να κάνει με το γεγονός ότι η ανάλυση μας δεν περιορίζεται σε συ-

μπερασμούς για εκφράσεις του προγράμματος μήκους ένα (δηλαδή, τοπικές μεταβλητές), αλλά

συμπεριλαμβάνει και μεγαλύτερες, όπως για παράδειγμα η obj.fld1.fld2 (μέχρι κάποιο μέγι-

στο μήκος, παράμετρο της ανάλυσης). Το υποκείμενο πρόβλημα είναι το εξής: για παράδειγμα,

αν η ανάλυση έχει υπολογίσει ότι δύο μεταβλητές x και y είναι συνώνυμα, τότε πρέπει επίσης

να υπολογίσει ρητά και ζευγάρια σαν τα {x.f με y.f}, {x.g με y.g}, {x.f.h με y.f.h}, κτλ.
΄Ενας τέτοιος συμπερασμός οδηγεί σε εκθετικό πλήθος ζευγαριών.

Για τους παραπάνω λόγους, εισάγουμε μία ειδική δομή δεδομένων, η οποία αποτυπώνει τη

σχέση συνωνύμων που υπολογίζει μία must-ανάλυση, και ταυτόχρονα αξιοποιεί τις παραπάνω

παρατηρήσεις με αποτέλεσμα τη σημαντική βελτίωση της συνολικής απόδοσης. Η δομή μας

έχει τη μορφή κατευθυνόμενου γράφου, όπου κάθε κόμβος αναπαριστά ομάδες μεταβλητών

(δηλαδή, τάξεις ισοδυναμίας), με κάθε μεταβλητή-μέλος να είναι συνώνυμη με όλες τις άλλες

που βρίσκονται στον ίδιο κόμβο. Κάθε ακμή αναπαριστά την πρόσβαση σε κάποιο πεδίο, ενώ η

φορά της ακμής κωδικοποιεί ποιός κόμβος ‘δείχνει’ σε ποιόν (με τον ίδιο τρόπο που συναντάται η

έννοια σε μία ανάλυση δεικτών). Σύνθετες εκφράσεις του προγράμματος, μήκους μεγαλύτερου

του ένα, κωδικοποιούνται έμμεσα στα μονοπάτια που εμφανίζονται μεταξύ των κόμβων του

γράφου.

Τέλος, επιβεβαιώνουμε πειραματικά τα θεωρητικά οφέλη της ειδικής δομής που παρουσιάσαμε,

παρατηρώντας βελτιώσεις στην απόδοση του αλγορίθμου κατά δύο τάξεις μεγέθους. Με αυτή

την προσέγγιση, καθίσταται δυνατή η αποδοτική εφαρμογή της must-ανάλυσης συνωνύμων σε

μεγάλα προγράμματα Java, με χρόνους εκτέλεσης συχνά κάτω από μισό λεπτό.

Αμυντική Ανάλυση Δεικτών. Στο έβδομο κεφάλαιο ολοκληρώνουμε την παρουσία-

ση των επιστημονικών συνεισφορών της διατριβής, περιγράφοντας την τέταρτη και τελευταία

από αυτές. Επιστρέφουμε ξανά στην οικογένεια των may-αναλύσεων δεικτών, αυτή τη φορά

με κυρίαρχο στόχο τον υπολογισμό πραγματικά έγκυρων αποτελεσμάτων, ακόμα και υπό την

παρουσία άγνωστου ή ‘εχθρικού’ κώδικα. Η ανάλυση μας δεν θέτει κάποιο περιορισμό στα

χαρακτηριστικά που χρησιμοποιεί το υπό-ανάλυση πρόγραμμα, και επίσης προσπαθεί να μην

κάνει εκπτώσεις στην συνολική απόδοση του αλγορίθμου για να επιτύχει τους στόχους της.

1
Αντιθέτων, όπως περιγράφουμε πιο αναλυτικά στο κείμενο του κεφαλαίου, η σχέση συνωνύμων σε μία

may-ανάλυση δεν αποτελεί σχέση ισοδυναμίας.



Η ανάλυση μας, όντας μέλος της οικογένειας των may-αναλύσεων, έχει σαν στόχο τον υπολο-

γισμό μίας υπερεκτίμησης της πραγματικής συμπεριφοράς του προγράμματος. Για να καταφέρει

ταυτόχρονα να τηρήσει τους ισχυρισμούς εγκυρότητας που δίνει, θα πρέπει όταν για οποιο-

δήποτε λόγο δεν είναι σίγουρη για το σύνολο αντικειμένων στα οποία μπορεί να δείξει κάποια

έκφραση, να αναφέρει ότι μπορεί να δείξει στα πάντα.

Μία αφελής προσέγγιση του θέματος οδηγεί στον περιττό υπολογισμό αρκετών αποτελεσμάτων,

τα οποία στη συνέχεια θα ακυρωθούν ή έμμεσα θα υποσκελιθούν από άλλα, ώστε τελικά να τη-

ρηθεί η εγκυρότητα. Κάτι τέτοιο έχει φυσικά σημαντικές, αρνητικές επιπτώσεις στην συνολική

απόδοση της ανάλυσης. Η προσέγγισή μας καταφέρνει να παραμείνει αποδοτική χωρίς να ζημι-

ώνει την συνολική εγκυρότητα, αναβάλλοντας τον υπολογισμό πληροφορίας μέχρις ότου είναι

βέβαιη ότι αυτή δεν θα ακυρωθεί σε μετέπειτα στάδιο.

Σαν αποτέλεσμα, οι παραπάνω σχεδιαστικές επιλογές επιτρέπουν στην ανάλυση μας να είναι

αρκετά αποδοτική, επιτυγχάνοντας υψηλά επίπεδα ακριβείας, αδύνατα για τις κλασικές, προ-

ϋπάρχουσες αναλύσεις. Παρά την αρκετά συντηρητική και αμυντική φύση της, η ανάλυση κα-

ταφέρνει να δώσει έγκυρα και άμεσα εφαρμόσιμα αποτελέσματα για ένα μεγάλο υποσύνολο του

υπό-ανάλυση προγράμματος. Πειραματικά, κάτω από τις πιο απαισιόδοξες και αμυντικές παρα-

μέτρους, γίνεται κάλυψη του 34-74% του προγράμματος σε σύγκριση με μία από τις καλύτερες,

αλλά μη-έγκυρες, αναλύσεις του χώρου.

Τέλος, στα εναπομείναντα κεφάλαια της διατριβής, δίνεται ο επίλογος της εν λόγω δουλειάς.

Στο όγδοο κεφάλαιο διερευνούμε σχετική ερευνητική δουλειά του χώρου, για τις τέσσερεις

επιστημονικές συνεισφορές μας. Κλείνοντας, στο ένατο και τελευταίο κεφάλαιο σκιαγραφώνται

μελλοντικές ερευνητικές κατευθύνσεις και γίνεται μία τελική εκτίμηση της διατριβής.
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Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees

1. INTRODUCTION

Don’t be scared. All of this is new to
you, and new can be scary. Now we
all want answers. Stick with me—you
might get some.

The 13th Doctor - Doctor Who

Static program analysis is the cornerstone of several modern programming facilities and tools
for program development and aided program understanding. Nowadays, it is an umbrella
term for many different methodologies (Hoare logic [46, 63, 112, 128], model checking [25,
26, 40, 118], symbolic execution [15, 65, 74, 113], abstract interpretation [27–29], data-flow
analysis [68, 72, 73, 107, 124, 138], and so on) all with the ultimate goal of inferring a
program’s properties, without the need of an actual execution. It is routinely employed in
many different contexts: compilers, bug detectors, verifiers, security analyzers, IDEs, and a
myriad other tools.
The main intention of any static program analysis algorithm is to reason about the set of all
feasible behaviors (under some abstraction of behaviors) that a given program might exhibit
under all possible executions. For example, could this method throw a runtime exception?
or is that type cast possible to fail under some program input? etc. As a result, virtually
all interesting static program analysis questions are undecidable—indeed the prototypical
undecidable problem, the halting problem, is a static program analysis question: will a
program terminate under all inputs?
Pointer analysis (also known as points-to analysis) is a fundamental subdomain of static
program analysis that consists of computing some abstract memory model for a given pro-
gram. The essence of such an analysis is to compute a set of possible objects that a program
variable or expression may point to during program execution. A straightforward endeavor
at first, it quickly gets too complicated in practice due to all of the intricate details one has
to take into account and the multitude of different features that mutually depend on each
other.1 Although a challenging task, smart implementations of pointer analysis can bear
many benefits to client analyses that will subsequently consume the results to reason about
specialized behaviors (e.g., security vulnerabilities or potential optimization opportunities).
A closely related analysis, sometimes confused with pointer analysis, is alias analysis in which
one computes sets of program expressions that may alias (i.e., point to common objects) with
each other. Pointer analysis could—although it is not the only possible alternative—be used
to implement an alias analysis algorithm, and vice versa.
At the same time, programming languages are evolving, becoming ever higher-level and more
complex. Many abstraction levels are added throughout the years with the aim of making the

1The analysis inputs are large and the analysis algorithms are typically quadratic or cubic, but try to
maintain near-linear behavior in practice, by exploiting program properties and maintaining precision—more
precise (i.e., smaller) inference sets lead to less work.
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very task of programming easier for developers allowing them to express more with less effort
(e.g., in terms of lines of code). Frequently, new features come with complicated semantics
regarding their possible implementations and usually they interact in intricate ways with
pre-existing ones.
Additionally, modern software paradigms have evolved as well. Complex design patterns
have become the norm for experienced developers, immense libraries and frameworks are
accepted as a prerequisite for any non-trivial software, and over-involved build tools often
make even the task of understanding all of the program’s dependencies a challenge.
It comes as no surprise that any kind of static analysis has struggled to keep up with this
ever-increasing complexity both in programming languages and software. Even the seemingly
simple task of computing a program’s call-graph (i.e., which methods are called at every
invocation site) requires sophisticated analysis for achieving acceptable precision. Thus,
the main emphasis of pointer analysis algorithms is on combining fairly precise modeling of
pointer behavior and memory abstractions with scalability.

Thesis.

Precise yet scalable static pointer analysis algorithms can be obtained by careful
choice of different policies for different parts of the program. In a complementary
fashion, analyses can be designed to offer (uniquely) strong guarantees on the
soundness of results, but for a part of the program only.

We provide a number of techniques for implementing scalable static pointer and alias analyses
in the setting of Java programs by configuring the analysis strategy differently for different
code parts. Additionally, we present a couple of defensive algorithms for reporting high-
confidence results even in the presence of hostile or unknown program points.

1.1 Pointer Analysis Crash Course

Before enumerating the scientific contributions of this dissertation, it is mandatory to intro-
duce certain concepts related to pointer analysis, that comprise the scientific and technical
base of this work. This is by no means a detailed presentation of said concepts—a more
elaborate introduction will follow in Chapter 2.

Implementation Platform & Target Language. Most of the following work and algo-
rithms have been expressed in the Doop framework [16]. Doop is a well established pointer
analysis framework offering a wide variety of full-fledged algorithms for static pointer analysis
of Java programs. More in Section 2.11.

Context Sensitivity. Implementing any sophisticated pointer analysis algorithm quickly
turns out to be a balancing act between precision and performance tradeoffs. Any attempt
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for a scalable algorithm might inadvertently be accompanied by significant precision losses
whereas an endeavour for highly precise results might also enforce huge performance penal-
ties.
Throughout the years, the scientific community has amassed a few tools in its arsenal in
order to tackle this conundrum of precision versus performance. Among those tools, a
widely employed notion, that aims to improve precision without having to pay an unbearable
performance cost, is that of context resulting in context-sensitive algorithms. An algorithm
will use additional information (also known as context) to annotate analysis components
with the aim of countering potential precision losses. The key idea is that the analysis will
differentiate the handling of program elements under some contexts while it will collapse it
under others. For instance, an algorithm might differentiate the analysis of a method when
called from method A or method B or anywhere else (thus under three different contexts).
Two main kinds of context have been widely used in the past; in call-site-sensitive analyses
call instructions comprise the context elements, whereas in object-sensitive analyses context
is based on the identity of the calling object at each method invocation. More in Section 2.2.

May vs. Must Analyses. The goal of any static program analysis algorithm is to rea-
son about a set of behaviors under all potential program executions. This endeavour is
an undecidable problem for any set of behaviors other than the most trivial ones. As a
consequence, any practical algorithm has to approximate results in one of two directions; ei-
ther over-approximate and both report all possible behaviors and also some that will never
actually arise, or to under-approximate and be conservative by reporting only a subset of
potential arising behaviors. Analyses are often categorized as may-analyses when they over-
approximate results, and as must-analyses when they under-approximate results. More in
Section 2.6.

Soundness. A formal term often used to accompany static pointer analysis algorithms is
that of soundness. In layman’s terms, an algorithm is said to be sound when it actually does
what it claims. For instance, a may-pointer analysis claims that it aims to over-approximate
the set of objects that various program expressions may point to in all possible program
executions. If the results are not missing any such inference that could arise in a program
execution, then the algorithm is sound. Due to various factors, most may-pointer analysis
algorithms forgo soundness in order to maintain scalability. A more detailed discussion
regarding soundness will follow in Sections 2.7-2.9.

1.2 Scientific Contributions

In this section, we will briefly explain the main scientific contributions of this dissertation.
As already mentioned, the exploration happens in the context of analyzing Java—mainly
by use of the Doop framework—although it is not far-fetched to generalize results to other
languages that offer similar features and follow similar paradigms.
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Ever since the introduction of object sensitivity by Milanova et al. [106], there has been
increasing evidence that it is the superior context choice for programs expressed in object-
oriented languages, yielding a high precision to cost ratio. Such has been its success that in
practice it has almost superseded the use of more traditional call-site-sensitive analyses in
object-oriented languages. Nevertheless, a call-site-sensitive analysis is not always inferior as
there are language features and code patterns that may partially favor this kind of context
abstraction.
Consequently, one might consider an approach where both context flavors are—naively—
combined in every program point with the goal of increasing the precision of the end result.
Truly, such a combination would bear some precision benefits but in most cases it would be
accompanied by an infeasibly high cost.

First contribution. Our first scientific contribution is a step towards a more sophisticated
handling, aiming to achieve a beneficial combination of both context flavors. We propose a
hybrid context flavor for defining a family of analyses where classical contexts are mixed and
combined only in those program points where it is profitable for the analysis. The resulting
selective combination of both context kinds vastly outperforms not only analyses following
the naive non-selective combination approach, but also their “normal” object-sensitive coun-
terparts. This result holds for a large array of context-sensitive analyses establishing a new
set of performance/precision sweet spots.

Second contribution. The second scientific contribution tries to tackle an oft-reported
issue with context-sensitive analyses, in that they mostly operate in two extremes: either
the analysis is precise enough that it manipulates only manageable sets of data, and thus
scales impressively well, or the analysis gets quickly derailed at the first sign of—massive—
imprecision and becomes orders-of-magnitude more expensive than would be expected given
the program’s size. Currently, there is no approach for a precise, context-sensitive (of any
context flavor) analysis that would scale across the board at a level comparable to that of
a context-insensitive one. Instead, we propose a two step process by means of introspec-
tive analysis: the approach uniformly scales context-sensitive analyses by eliminating the
performance-detrimental behavior, only at a small precision expense.
Introspective analysis employs a common adaptive pattern: it first performs a context-
insensitive analysis and then it uses the results to selectively refine (i.e., analyze context-
sensitively) only those program elements that are expected not to cause an explosion in
running time or memory space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach can be remarkably
effective, achieving scalability (often with dramatic speedup) for benchmarks previously
completely out-of-reach for deep context-sensitive analyses.
For the last two contributions, we shift our attention towards analyses that aim for the
highest confidence in their claims. Although quite reluctant and conservative in making a
claim, when they actually do they make certain that it is the correct decision.

Third contribution. The next, third, contribution features a different flavor of static
program analysis. Instead of the more commonly researched paradigm of may-analyses, we
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chose to explore the alternative approach of a must-analysis. More specifically, we focus
on an instance of a must-alias (also known as definite-alias) analysis that aims to infer
aliasing relationships among program expressions that are guaranteed to always hold.2 The
applications of a must-alias analysis are manifold: (1) it is useful for enabling optimizations
such as constant folding and register allocation, (2) it can increase the precision of bug
detectors, e.g., greatly benefiting a null-reference detector and a non-termination detector,
and (3) it can be used internally as part of more complex analyses, e.g., one that can reason
correctly about “strong updates” at instructions that modify the heap. In order to compute
high-confidence, non-trivial results, the analysis needs to be flow-sensitive, i.e., compute
information at each program point and propagate it forward while respecting the control-
flow of the program.
Furthermore, we observe that a must-alias analysis exhibits certain properties that can be
exploited in order to achieve a more efficient algorithm without any compromise in the preci-
sion or the validity of its results. We present a custom specialized data structure that speeds
up a must-alias analysis by nearly two orders of magnitude. The data structure achieves its
efficiency by encoding multiple alias sets in a single linked structure, and compactly repre-
senting the aliasing relations of arbitrarily long program expressions. Under this approach,
must-alias analysis can be performed efficiently, over large Java benchmarks, in under half
a minute, making the analysis cost acceptable for most practical uses.

Fourth contribution. For our last contribution, we revisit the setting of a may-analysis but
this time while aiming to explore the potential of a truly sound—instead of just soundy—yet
practical analysis. We present such an approach in a defensive may-point-to analysis, which
can guarantee soundness even in the presence of arbitrary opaque code.3 A key design tenet
of our approach is laziness: the analysis computes points-to relationships only for program
expressions that are guaranteed to never escape into opaque code.
The defensive nature of our analysis means that it might miss some valid inferences, but
because of its laziness it will never waste work to compute sets that are not “complete”, i.e.
that may be missing elements due to opaque code. This frugal approach is what enables
the great efficiency of the algorithm, allowing for a highly precise points-to analysis (such as
a 5-call-site-sensitive, flow-sensitive analysis). Despite its conservative nature, the analysis
yields sound, actionable results for a large subset of the program code, achieving (under
worst-case assumptions) 34-74% of the program coverage of an unsound state-of-the-art
analysis for real-world programs.

1.3 Outline

The rest of this dissertation is organized as follows:

2As previously mentioned, a must-analysis will aim to compute an under-approximation of behaviors that
will happen in every possible program execution.

3Code that cannot be analyzed such as dynamically generated or native code, or dynamic language
features such as reflection, invokedynamic, etc.
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• Chapter 2 offers a quick yet non-trivial introduction to certain notions or properties that
are important to take under consideration when designing a sophisticated static pointer
analysis algorithm.

• Chapter 3 examines how a naive combination of object sensitivity and call-site sensitivity
into a single analysis can be massively penalizing in terms of performance. Following that,
we presents a hybrid context-sensitive approach for implementing points-to analyses that
leverage the benefits of combining both object and a call-site sensitivity while avoiding to
pay most of the cost of a naive combination.
This chapter presents research previously published in “Hybrid Context-Sensitivity for
Points-To Analysis” [70].

• Chapter 4 examines the well-known, bi-modal nature of classical static program points-
to analyses in regards to scalability; they are either quite scalable or not scalable at all.
In order to counter that discrepancy, we propose an adaptive approach in introspective
analysis, where an imprecise analysis is used as a stepping stone in order to fine-tune
program points in which a more precise handling is both beneficial and not detrimental
to the overall analysis’s performance.
This chapter presents research previously published in “Introspective Analysis: Context-
sensitivity, Across the Board” [144].

Both aforementioned contributions aim for more scalable analyses that achieve superior
performance without foregoing precision. The next three contributions aim for analyses that
although more restrained on what they report, they do so with much more confidence in the
accuracy of their claims.

• Chapter 5 examines how to compose a declarative model of a rich family of must-alias
analyses, with emphasis on careful and compact modeling, while at the same time exposing
the key points where the algorithm’s inference power can be adjusted.
This chapter presents research previously published in “A Datalog Model of Must-Alias
Analysis” [8].

• Chapter 6 builds upon the previous chapter and goes forth to provide a specialized data
structure that by exploiting the nature of a must-alias analysis it achieves high performance
without any sacrifice on the accuracy of its results. We explore the data structure’s
performance in both an imperative (implemented in Java) and a declarative (implemented
in Datalog) setting and contrast it extensively with prior techniques.
This chapter presents research previously published in “An Efficient Data Structure for
Must-Alias Analysis” [71].

• Chapter 7 examines how a defensive reasoning in the presence of opaque code can be
combined along with computational laziness in order to produce a highly efficient, highly
precise and truly sound may-points-to analysis.
This chapter presents research previously published in “Defensive Points-To Analysis:
Effective Soundness via Laziness” [143], that also received a Distinguished Paper award.
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• Chapter 8 first discusses related work that is specific to previous chapters, and then
expands to various other interesting subjects in the broader realm of static analysis.

• Chapter 9 concludes this dissertation by assessing our initial thesis and discussing future
work.
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2. BACKGROUND

Once upon a tim— No! Once upon sev-
eral times...

The Master - Doctor Who

There are a few important design choices that can affect drastically the properties a static
program analysis algorithm will enjoy and the reasoning that is required to achieve such
goals. A bird’s-eye view is given below.

2.1 Naive Pointer Analysis

Before delving into designing any sophisticated pointer analysis algorithm, it is helpful to
have a short view on a naive attempt to track the set of objects possible pointed by program
variables in all program executions. This will also give an insight on the issues that arise
from such a naive approach.
For instance, in the code snippet of Figure 2.1, the analysis will infer that variable obj1 may
point to memory object o1 (i.e., obj1 7→ {o1}), and variable obj2 to memory object o2 (i.e.,
obj2 7→ {o2}). Taking into account the method invocation of foo in line 10, the analysis
will infer that argument variable arg may point to o1 (since obj1 also points to the same
object). Following the same reasoning in line 12, it will also infer that arg may point to o2
(i.e, arg 7→ {o1, o2}). This correctly reflects the fact that the argument of method foo will
point to either object during different program points.

1 class A {
2 void foo(Object arg) { return arg; }
3 }
4

5 class B {
6 void bar(A a1, A a2) {
7 obj1 = new ... // allocated object o1
8 obj2 = new ... // allocated object o2
9 ...

10 obj3 = a1.foo(obj1);
11 ...
12 obj4 = a2.foo(obj2);
13 }
14 }

Figure 2.1: Code snippet for illustrating pointer analysis algorithms.

But here is one point where the weakness of a naive approach starts to show. When rea-
soning about the return instruction in line 2, the analysis will infer that method foo might
return both memory objects, since the return variable was inferred to possibly point to both.
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Subsequently, the analysis will infer that both variables obj3 and obj4 might point to both
objects, given that they are assigned whatever the method invocation might return (i.e.,
obj3 7→ {o1, o2} and obj4 7→ {o1, o2}). This is clearly wrong since, for example, there is
no possible program execution under which variable obj3 might point to o2 (assuming no
other code interferes).
In following sections we will present countermeasures one could include when designing a
pointer analysis algorithm in order to reclaim portions of lost precision. The aforementioned
naive algorithm is an instance of context-insensitive analyses. The next section clarifies the
notion of context.

2.2 Context Sensitivity

Throughout the years, pointer analysis has evolved and has been the focus of intense re-
search. It is widely accepted to be among the most standardized and well-understood inter-
procedural analyses (i.e., going outside method borders when reasoning about a property).
The emphasis of points-to analysis algorithms is on combining fairly precise modeling of
pointer behavior with scalability. The challenge is to pick judicious approximations that will
allow satisfactory precision at a reasonable cost. Furthermore, although increasing precision
often leads to higher asymptotic complexity, this worst-case behavior is rarely encountered
in actual practice. Instead, techniques that are effective at maintaining good precision often
also exhibit better average-case performance, since smaller points-to sets lead to less work.
A widely used concept that emerged as a powerful tool for tuning precision while still achiev-
ing scalable analyses, is that of context sensitivity. It consists of qualifying interesting compo-
nents of an analysis, such as program expressions, object abstractions or method invocations,
with additional context information. The core idea being that the analysis will collapse infor-
mation (e.g., “what objects this method argument may point to”) for executions that result
in the same context, while keeping separate information for different contexts. In essence,
qualifying components with additional context is as if each such component is replaced with
multiple versions (one for each different associated context value) and the analysis can reason
individually for each version. This approach tries to counter the loss of precision that natu-
rally arises in any static analysis, from conflating information of different dynamic program
paths.
Two main flavors of context sensitivity have been explored in past literature: (1) call-site
sensitivity (also known as kCFA) [137, 140] in which call-sites are used to qualify variables
and other analysis components, essentially re-analyzing a method for different call-sites that
target that method, and (2) object sensitivity [105, 106, 142] in which receiver objects of a
call are used instead, in a similar manner. Another kind of context sensitivity, known as type
sensitivity, has also been explored as an approximation of object sensitivity with the aim of
preserving high precision at substantially reduced cost. In type sensitivity, upper bounds on
the dynamic types of the receiver objects are employed as context elements.
A context-sensitive analysis has a second axis of parameterization besides context flavor—
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that of (max) context depth. Consequently, a common way to describe an analysis is
using the following naming scheme: X-FLAVOR-sensitive+Y -heap, e.g., as in 3-call-site-
sensitive+2-heap. Here FLAVOR denotes the kind of context information being employed,
and, X and Y denote the context depth limits being used at invocation sites and at object
allocations respectively. In the previous example the analysis is keeping track of the 3 most
recent call-sites that led to the current method call, in order to annotate local variables.
Similarly, the analysis is using the 2 most recent call-sites that led to the allocation site of
an object to annotate the newly allocated object.

2.2.1 Call-Site Sensitivity (k-CFA)

As previously mentioned, a call-site-sensitive analysis uses method call sites (i.e., labels of
invocation instructions) as context elements. The analysis separates information on program
expressions, such as local variables, per call-stack (i.e., sequence of k most recent call-sites)
that led to the current method call. Similarly, the analysis separates information on heap
objects per call-stack that led to the object’s allocation.
For instance, in the code snippet of Figure 2.1, a 1-call-site-sensitive analysis (unlike a
context-insensitive analysis) will distinguish the two call-sites of method foo in lines 10 and
12. This results in an analysis that will treat foo separately in two cases: that of its formal
argument, arg, pointing to anything obj1 may point to, and that of arg pointing to anything
obj2 may point to.
An equivalent mental model is that of two instances of method foo being analyzed—
foo_COPY1 and foo_COPY2. The invocation in line 10 leads to foo_COPY1, whereas the one
in line 12 leads to foo_COPY2. After the analysis has concluded, if one is to query regarding
method foo, information from both instances will be collapsed into as single answer-set.
Therefore, following the reasoning of Section 2.1, the analysis will infer, among others, that
foo_COPY1::arg 7→ {o1} and foo_COPY2::arg 7→ {o2}, and as a result that obj3 7→ {o1}
and obj4 7→ {o2}. As already mentioned, an implicit inference is that of arg 7→ {o1, o2},
regarding the unqualified analysis of method foo.

2.2.2 Object Sensitivity

In contrast, an object-sensitive analysis uses allocation sites (i.e., labels of instructions con-
taining a new statement) as context elements. (Hence, a better name for “object sensitivity”
might have been “allocation-site sensitivity”.) When a method is called on an object (also
known as the call receiver), the analysis separates information depending on the allocation
site of that object, as well as other, previous allocation sites used as context.
Thus, in the code of Figure 2.1, a 1-object-sensitive analysis will analyze foo separately on
all the allocation sites of objects that variables a1 and a2 may point to. If, for example,
a1 and a2 are inferred to potentially point to objects from two and three distinct allocation
sites respectively, foo will effectively be analyzed under five different contexts. On the other
hand, if the analysis has inferred that both a1 and a2 may only point to objects from a
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single common allocation site, then the method will only be analyzed under one context.
It is not apparent from this code fragment—and this also holds in the general case–neither
whether a1 and a2 may point to different objects, nor to how many: the allocation site of
the receiver object may be remote and unrelated to the method call itself. Similarly, it is
not possible to compare the precision of an object-sensitive and a call-site-sensitive analysis
in principle. In this example, it is not even clear whether the object sensitive analysis will
examine all calls to foo as one case, as two, or as many more, since this depends on the
allocation sites of all objects that the analysis itself computes to flow into a1 and a2.

2.3 Intraprocedural vs. Interprocedural Analyses

Different kinds of static program analysis may define differently which program parts are of
interest. An intraprocedural analysis makes its reasoning using only the local information
that is available in each program function. Multiple analyses commonly found in a classical
compiler, such as type-checking or the computation of live-ranges for program variables
are well-known examples of intraprocedural static program analyses. On the contrary, an
interprocedural analysis is one whose reasoning transcends function boundaries, taking into
account how different functions interact with each other. An analysis reasoning about thrown
exceptions—that flow out of a function—is one such example.
Furthermore, a related categorization is that of a whole-program analysis in contrast to a
partial one. A whole-program analysis examines every part of the program, including any
external dependencies that the code may have, and reasons about the effects each part has
on the rest of the program. In the setting of Java, for example, a whole-program analysis
not only reasons about the application code but additionally about any third-party library
used by the program (e.g., from external Java Archives—JARs) and also about code run by
the Java Runtime Environment—i.e, library code provided by the language itself. On the
other hand, a partial analysis only focuses on specific parts of the program and ignores the
effects of the rest (e.g., an analysis focusing on certain Java packages).
A partial analysis usually may afford to implement more complex, more expensive reasoning
than a whole-program one, since it only focuses on a very localized part of the program. On
the contrary, a whole-program analysis has to constantly balance the complexity of its logic,
any potential precision gains but also any scalability penalties. The rest of this dissertation
will only focus on a few interesting whole-program analyses.

2.4 Flow Sensitivity

Although counter-intuitive at first, it is not unusual for a static program analysis to be
flow-insensitive. A flow-sensitive analysis examines a method’s instructions while taking
into account the order they appear in the source code. On the contrary, a flow-insensitive
analysis examines a method’s instructions as if they were in a set, without any particular
order (i.e., any instruction could happen before any other), and as if they may repeat any
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number of times. The latter approach leads to analyses that over-approximate the semantics
of the actual code—thus potentially suffering in precision—but it is a common tradeoff when
aiming to improve the performance of an analysis.
The penalties on performance for a flow-sensitive analysis mainly stem from the need to
keep track of what holds at every single program point. Potentially, this could mean that
information that remains unchanged will be duplicated on a multitude of instructions. On
the contrary, a flow-insensitive analysis will collapse information along all instructions of a
method.

1 x = 1;
2 y = x;
3 x = 2;

For the example on the side, a flow-sensitive analysis reasoning about the values
of primitive expressions might report that: after line 1: “x has the value 1”,
after line 2: “x has the value 1” and “y has the value 1”, and after line 3: “x
has the value 2” and “y has the value 1”.
A flow-insensitive analysis might instead report that: “x has either the value 1 or 2” and
“y has either the value 1 or 2”, because instructions are examined as if happening in any
order.

2.5 Static Single Assignment Form

In compiler design, static single assignment form (also known as SSA) is a property of an
intermediate representation (IR) of the program in which every local variable is assigned only
once. Existing local variables in the original source code are split into versions (e.g., variable
x might be split into x_1 and x_2) with each version being assigned only once. At program
points where the value of the original variable is read and there are multiple valid versions,
as in the point where the branches of an if-else statement merge, a phi-node statement is
used. This special statement bears the semantics of somehow “choosing” a specific variable
version to read.

1 if (...) x = 10;
2 else x = 20;
3 y = x;

Original source code

1 if (...) x_1 = 10;
2 else x_2 = 20;
3 y = phi(x_1, x_2);

The equivalent SSA form

Figure 2.2: Example code and equivalent SSA form.

In the context of static program analysis, SSA is often used to approximate the benefits of a
flow-sensitive analysis, particularly pertaining to the handling of local variables. This is not
the case for other, more complicated language features such as heap accesses and method
invocations, but SSA provides an easy way to pick the low-hanging fruit.

x_1 = 1;
y = x_1;
x_2 = 2;

The flow-insensitive analysis of 2.4 will report quite different results when an-
alyzing the SSA-form analogue of the example code (given on the side): “x_1
has the value 1”, “y has the value 1”, and “x_2 has the value 2”. The analysis
is still examining instructions without taking order into account, and is unable
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to answer questions such as “what is the value of variable x at the end of the
method” (whether the value of x_1 or x_2 is the final one), but nevertheless it has managed
to reclaim some of the precision that was previously lost—e.g., regarding the value of variable
y.

2.6 May vs. Must Analyses

Given an abstraction of behaviors (e.g., thrown exceptions) one can define two interesting
sets regarding the potential behaviors that a given program will exhibit. Set Any(P ) is
defined as containing all possible behaviors that a program P will exhibit in some program
execution (e.g., method meth1 will throw exception e1 in one execution and exception e2
in another). Respectively, set All(P ) is defined as containing behaviors that will appear in
every program execution (e.g., method meth2 will always throw exception e3 during any
execution).

Any(P ) :=
⋃

e∈Executions

Behaviors(P, e) and All(P ) :=
⋂

e∈Executions

Behaviors(P, e)

Both sets are a mathematical ideal, an answer only an oracle could provide. But, for any
realistic analysis such an endeavor is an undecidable problem. Thus, a practical static
program analysis will aim to compute an approximation of one of the two sets. Under that
definition, analyses are split mainly into two groups depending on the kind of approximation
they try to achieve. On one hand, a may-analysis is one that aims to over-approximate
Any(P ).

May(P ) ⊇ Any(P )

On the other hand, a must-analysis is one that aims to under-approximate. In many set-
tings (e.g., when an analysis integrates static and dynamic reasoning as in dynamic-symbolic
execution), the aim is to under-approximate Any(P ). But, this is not always the case. For
instance, in the setting of a static pointer or alias analysis, it is more favorable for practical
approaches to aim towards an under-approximation of All(P ).

Any(P ) ⊇Must(P ) and Any(P ) ⊇ All(P ) ⊇MustP T (P )1

For the rest of this dissertation, unless otherwise noted, all described analyses aim to compute
May(P ), i.e., they are may-analyses. This also reflects the fact that may-analyses comprise
the norm in related literature.

2.7 Soundness & Completeness

The term soundness, and its converse completeness, originate from formal mathematical logic
where they are used in order to evaluate a proof system under a given model. The model is

1Referring to the common approach of a must-(pointer-/alias-)analysis.
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some kind of mathematical structure, such as sets over some domain of interest and the proof
system is a set of rules with which properties regarding the model are proven. A system is
sound if and only if statements it can prove are indeed true in the model (concisely given
as “claim implies truth”). A system is complete if and only if what is true in the model can
also be proven by the system (concisely given as “truth implies claim”).
In the context of static program analysis, the most relevant and widely used term is that
of soundness. In this setting, the analysis is making claims regarding potential program
behaviors under any program execution and the validity of those claims constitutes whether
the analysis is sound or not. More specifically, a may-analysis is sound whenever what it
claims is actually true—i.e., the computed behaviors are an over-approximation of Any(P ).
Respectively, a must-analysis is sound whenever the computed behaviors are an under-
approximation of All(P ). A trivially sound-may analysis could simply infer top (>), i.e.,
every possible behavior. A trivially sound-must analysis could simply infer the empty set
(∅), i.e., no behavior at all.
Contrary to the prevalent use of soundness for evaluating static program analysis algorithms,
completeness is scarcely referenced—if ever. One can easily find “proofs of soundness” on
many publications but not the analogous “proofs of completeness”. This is mainly because
of the way analyses (may- or must-) are defined as aiming to compute an approximation of
potential behaviors. For example, what would the meaning of a complete may-analysis be?
Such an analysis has to abide by the definition of “truth implies claim”. In this case “truth”
is any over-approximation of Any(P ). Consequently, a “complete” may-analysis would need
to compute all possible over-approximations of Any(P ), i.e., for all practial purposes infer
top (>), and thus, the term is less relevant in the domain of static program analysis.
Relatedly to soundness, there are two closely related terms characterizing the validity of each
claim made by the analysis. If the analysis incorrectly claims that some behavior is among
the potential program behaviors, then this constitutes a false-positive. E.g., if the analysis
claims that method m1 might throw an exception e1, but there is no program execution
under which this will actually occur. Similarly, if an analysis claims that some behavior will
never happen but in reality there exists a program execution where such a behavior takes
place, then this constitutes a false-negative. E.g., if the analysis claims that method m2 will
never throw an exception, but it actually does. By consequence of previous definitions, a
sound may analysis will make no false-negative claims, and a sound must analysis will make
no false-positive ones.
It is noteworthy that every static program analysis is also making negative claims, in ad-
dition to positive ones, even if only implicitly. This is due to an analysis not making some
claim actually implicitly claiming its negation. For example, if a may-analysis for thrown
exceptions reports that method m1 might throw either exception e1 or exception e2, then
it also implicitly reports that the same method will never throw any other exception—given
that the analysis aims to compute an over-approximation of possible behaviors.
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2.8 Precision & Recall

Both a may- and a must-analysis operate under the premise of computing an approximation
of reality and thus there will always be claims that are either extraneous or missing. Of
course, any analysis should do its best to get as close to the truth, even if the actual set of
behaviors will always be out of grasp. This calls for some quantitative way to measure an
analysis’s quality. Two such metrics have been proposed. Precision indicates how many of
the analysis claims are actually part of the truth, whereas recall indicates how many of the
actual true claims are also reported by the analysis. For a formal definition supposing that:

• X is the number of true (actually happening) interesting behaviors

• T ≤ X is the number of correct claims made by the analysis (the true-positives)

• F is the number of incorrect claims made by the analysis (the true-negatives)

then
Precision(P ) = T

T + F
and Recall(P ) = T

X

A value of 1 is a perfect score, and a value of 0 is the worst one. A sound-may analysis will
have perfect recall, since it at least claims any behavior that is actually true. A sound-must
analysis will have perfect precision, since it makes no incorrect claims (it does not report
any behavior that cannot actually occur).
Highly useful as they are, both measures have a major, unavoidable shortcoming. It is rarely
the case that there is actual knowledge of the ground-truth. Somewhat a chicken-and-egg
problem, having an automatic way to retrieve the ground-truth for arbitrary programs is
both what a static analysis aims to achieve at its core and also what is needed to evaluate
its claims. Usually, one has to resort to observing a limited amount of actual executions
for a given program and—making the assumption that the observations are a good enough
representative—interpolate to all possible program executions.
Furthermore, this approach makes both measures empirical, in the sense that they measure
an analysis’s performance in regards to a specific given program. They bear no information
in regards to the analysis behavior at a theoretical level and cannot be generalized to other
programs. An analysis could be perfect for one program and terrible for another. This
could be tackled to some extent with the use of well-established benchmarking suites during
the testing phase, that aim to cover common and interesting code patterns and program
behaviors.

2.9 Soundiness

Although soundness seems like an essential property for any static program analysis algo-
rithm to have, and is quite prevalent in academic literature, Livshits et al [94] make a strong
claim that there is no practical sound whole-program may-analysis. Most of the time, this
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is a conscious compromise on how to handle certain language features and not due to lack
of understanding. If one would attempt to soundly model such features in the context of
a may-analysis, i.e., over-approximate their effects, this would most probably result in an
analysis that is so unscalable or imprecise that is practically useless.
At the same time, many academic publications make claims of soundness and may even
provide some kind of “proof of soundness” but this is mostly in regards to a subset of
language features—the analysis might be totally unsound in handling all the rest. Thus, a
need arises for a way to differentiate between an analysis that tries its best to be sound and
only gives up in a well-defined language subset, and one that is simply unsound.
The term soundiness, specific to the context of static program analysis, was coined by
Livshits et al [94] for such a purpose. A soundy analysis handles most classical, core language
features in a sound manner (i.e., over-approximates) and may only fail to do so (i.e., under-
approximates) in a small well-accepted subset of highly dynamic features, specific to each
language. Such features include uses of reflection or native code in Java, eval in Javascript,
and pointer arithmetic in C/C++.

2.10 A Static Program Analysis Mind Map

Figure 2.3 attempts to shed some light on how different kinds of static program analysis relate
to each other and to the mathematical ideals. Each set in figure 2.3a represents all behaviors
exhibited under a single actual program execution. Any static program analysis will collapse
different executions into a single set and will make claims about the given program in general.
In figure 2.3b, the ideal Any(P ) is represented by the union of all sets and that of Any(P )
by the intersection, respectively. Any sound may-analysis will result in a superset of Any(P )
(figure 2.3c), whereas any sound must-(pointer-/alias-)analysis (i.e., MustP T (P )) will result
in a subset of All(P ) (figure 2.3d). Finally, any unsound analysis (figure 2.3e) will result in
a set with no apparent properties; not entirely covering its appropriate mathematical ideal
but also including unrelated elements. More specifically though, as illustrated in figure 2.3f,
a soundy analysis will result in a set that starts as a superset of Any(P ) but misses some
hard (i.e., costly) to over-approximate behaviors in well-known cases.
Therefore, the nature of the algorithms described in Chapters 3 and 4 is loosely depicted
in Figure 2.3f. The analysis presented in Chapters 5 and 6 falls under what is depicted in
Figure 2.3d, whereas the analysis of Chapter 7 follows Figure 2.3c.

2.11 The Doop Framework

Most of the following work and algorithms have been expressed in the Doop framework [16].
Doop is written in the declarative language Datalog, and although Datalog has been used
for points-to analyses in the past, this was the first implementation to express full end-to-
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(a) Behavior sets of actual program executions (b) Mathematical ideals Any(P ) (union) and
All(P ) (intersection)

(c) Any sound may-analysis (green) in relation
to Any(P )

(d) Any sound must-(pointer-/alias-)analysis
(red) in relation to All(P )

(e) Any unsound analysis (orange) in relation
to both ideals

(f) Any soundy analysis (blue) in relation to
both ideals

Figure 2.3: Venn diagrams visualizing the relations of different static program analysis flavors
to each other and to real behaviors.
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end context-sensitive analyses for Java2, declaratively. This includes handling key analysis
elements such as call-graph construction as well as logic dealing with various semantic com-
plexities of the Java language such as native code, reflection and exceptions. Nowadays,
Doop offers a wide array of intricate analyses displaying a variety of properties.

A Datalog Primer

The declarative power of Doop stems from the expressiveness of Datalog. Datalog has been
described in the past, at a higher level, either as Prolog without function symbols or as SQL
with support of recursion. Programs written in Datalog are essentially logic specifications
that, as a side-effect, are also executable. One simply models the semantics for each language
feature of interest along with any reasoning rules of the desired analysis, and the underlying
engine is responsible for combining the logic specification with input facts and, after applying
a specialized computation, inferring anything that follows given the rules and the respective
input.
The aforementioned specialized computation is known as a fixpoint computation. All valid
Datalog rules are monotonic, i.e., can only reason about the inference of additional facts,
and this is exploited by the underlying engine in order to efficiently compute new facts in a
repeating fashion until knowledge from previous steps cannot be applied to infer anything
new in the current step. Datalog programs are contained in the PTime complexity class, i.e.,
they can be computed in polynomial time, and vice versa, any polynomial algorithm can be
implemented as a Datalog program. Additionally, because of the monotonic nature of rules,
termination is always guaranteed.3

A Datalog program is mainly a collection of rules with each rule contributing to a common
knowledge base. Each rule has two parts (separated by “←”); the rule-body, on the right,
that describes what conditions need to hold in order to infer something new, and the rule-
head, on the left, that describes what new knowledge is inferred each time. Both parts are
collections of relations that are conceptually similar to database tables. Relations can be
connected to each other either via commas (“,”), denoting a logical AND connection similar to
a database join, or via semicolons (“;”), denoting a logical OR connection. Finally, relations
can be negated by prepending an exclamation mark (“!”). Negation is stratified: it is only
applied to predicates that are either input predicates or whose computation can complete
before the current rule’s evaluation. We also permit multiple predicates in a rule head, as
syntactic sugar for replicating the rule body.
A classic example is given below. Parent represents the obvious parent relationship between
individuals abstracted by the two arguments, whereas Ancestor represents an ancestry rela-
tionship of any depth.

2More specifically, the soon-to-be presented algorithms operate on Java bytecode—the stack-based in-
termediate language used in the Java VM—rather than on Java source, and thus they could, in theory, be
applied to any programming language that targets the Java VM.

3We will later relax these constraints by adding language extensions that will push Datalog programs
over the PTime class and might invalidate the termination guarantees offered by the language. We will do
so in a principled way, allowing for greater flexibility on the algorithms that we can express.
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Ancestor(x,␣y)␣←␣Parent(x,␣y).␣

Ancestor(x,␣y)␣←␣Parent(x,␣z),␣Ancestor(z,␣y).
The first rule simply states that any parent relationship is also an ancestry one. The second
rule is where recursion, the true power of Datalog, shines through. It states that whenever
some x is the parent of some z, and it is already known that z is an ancestor of some y, then
it is also valid to infer that x is transitively an ancestor of y. This second rule is where the
fixpoint computation comes into play. Depending on the input facts, the underlying engine
might need to apply the rule multiply times, each time inferring new facts that will in turn
be used as the base for further inference.

2.12 Modeling Points-To Analyses: Parameterizable Model

We model a spectrum of flow-insensitive (recall Section 2.4), context-sensitive points-to anal-
yses and joint (also known as on-the-fly or online) call-graph construction as a parametric
Datalog program. Rules in a Datalog program are monotonic logical inferences that repeat-
edly apply to infer more facts until fixpoint. Our rules do not use negation in a recursive
cycle, or other non-monotonic logic constructs, resulting in a declarative specification: the
order of evaluation of rules cannot affect the final result. The same abstract model applies to
a wealth of analyses. We use it to model a context-insensitive Andersen-style [4] analysis, as
well as several context-sensitive analyses, both call-site-sensitive and object-sensitive ones.
The input language is a representative simplified intermediate language that models well the
Java bytecode representation4, but also other high-level intermediate languages. It does not,
however, model languages such as C or C++ that can create pointers through an address-of
operator. The techniques used in that space are fairly different—e.g., [56, 57]—although our
main hybrid approach is likely to be applicable there as well. Also, even though we model
regular object fields and static methods, we omit static fields, arrays, exceptions, etc. Their
treatment is a mere engineering complexity, as it does not interact with context choice, and
indeed the actual implementations in the Doop framework do cover all the intricacies of
Java bytecode.
The domain of our intermediate language (i.e., the different value sets that constitute the
space of our computation) is presented in Figure 2.4 and the core instructions are abstracted
away in the first six Datalog input relations presented in Figure 2.5. We explain the contents
of our input relations in more detail below:

• Alloc represents instructions for allocating an object heap5 on the heap, assigning it
to variable var of method inMeth. We abstract heap objects by their allocation sites

4The Java bytecode is a stack-based intermediate language used in the Java VM, for reasons of compact-
ness. For analysis purposes, however, it is common to translate it into equivalent but more conventional
notations, such as the Jimple intermediate language of the Soot framework [158, 159]. Therefore, it might be
more accurate to say that out intermediate language is a simplified form of Jimple, rather than a simplified
form of the Java bytecode.

5For brevity reasons, we will frequently refer to an abstract object allocated on the heap, simply as heap.
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V is a set of program variables
H is a set of heap abstractions (i.e., allocation sites)
M is a set of method identifiers
S is a set of method signatures (including name and type signature)
F is a set of fields
I is a set of instructions (mainly used for invocation sites)
T is a set of class types
N is the set of natural numbers
C is a set of contexts
HC is a set of heap contexts

Figure 2.4: The domain of our input intermediate language.

throughout the text, and for simplicity reasons, we name them just by using “heap”.
Additionally, note that every local variable is appropriately annotated by the exact
method signature in which it is defined and is thus uniquely identified just by its
name.

• Move represents instructions for copying values between local variables to and from.

• Load represents instructions for reading from the heap, i.e., from field fld of the object
stored in variable base and assigning the value back to variable to, whereas Store
represents instructions for the inverse flow (i.e., writing the value of variable from to
the field fld of the object in variable base).

• VCall represents instructions that call the method of the appropriate signature sig
that is defined in the dynamic class of the receiver object stored in local variable
base whereas SCall represents instructions that call a statically known target method
identified by signature sig. Both VCall and SCall supplementary report the invocation
instruction invo itself as well as the enclosing method inMeth.

The last seven Datalog relations encode pertinent symbol table information, that will prove
helpful in the analysis rules to come.

• FormalArg states that the i-th argument of method meth is the local variable arg.
ActualArg does the same for invocations.

• FormalReturn and ActualReturn convey similar information for when a method returns
to its caller.

• ThisVar represents the special local variable this—when applicable—inside method
meth whereas HeapType maps object heap to its actual dynamic type.

• LookUp simulates the lookup operations inside a Java VM that given the dynamic type
type of a receiver object and a method signature sig, find the appropriate target
method meth to call in a virtual invocation.
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Alloc(var: V, heap: H, inMeth: M) // var = new ...
Move(to: V, from: V) // to = from
Load(to: V, base: V, fld: F) // to = base.fld
Store(base: V, fld: F, from: V) // base.fld = from
VCall(base: V, sig: S, invo: I, inMeth: M) // base.sig(...)
SCall(meth: M, invo: I, inMeth: M) // Class.meth(...)

FormalArg(meth: M, i: N, arg: V)
ActualArg(invo: I, i: N, arg: V)
FormalReturn(meth: M, ret: V)
ActualReturn(invo: I, var: V)
ThisVar(meth: M, this: V)
HeapType(heap: H, type: T)
LookUp(type: T, sig: S, meth: M)

Figure 2.5: The input Datalog relations describing the program under analysis.

The specification of our points-to analysis as well as the input language are in line with those
in past literature [50, 100], although we also integrate elements such as on-the-fly call-graph
construction, static calls, and field sensitivity. Specifying the analysis logically as Datalog
rules has the advantage that the specification is close to the actual implementation. Datalog
has been the basis of several implementations of program analyses, both low-level [16, 78,
122, 163, 164] and high-level [38, 52]. Indeed, the analysis we show is a faithful model of the
implementation in the Doop framework, upon which our work builds. Our specification of
the analysis (Figures 2.6-2.7) is an abstraction of the actual implementation in the following
ways:

• The implementation has many more rules. It covers the full complexity of Java, includ-
ing rules for handling reflection, native methods, static fields, string constants, implicit
initialization, threads, and a lot more. The Doop implementation6 currently contains
over 1200 rules in the common core of all analyses, and several more rules specific to
each analysis, as opposed to the 9 rules we examine here. (Note, however, that these
few rules are the most crucial for any points-to analysis. They also correspond fairly
closely to the algorithms specified in other formalizations of points-to analyses in the
literature [103, 142].)

• The implementation also reflects considerations for efficient execution. The most im-
portant are those of defining indexes for the key output relations, or providing multiple
execution plans for key rules, all depending on the underlying Datalog engine. Further-
more, implementation details might include designating some relations as functions,
defining storage models for relations (e.g., how many bits each variable uses), designat-
ing intermediate relations as “materialized views” or not, etc. No such considerations
are reflected in our model.
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VarPointsTo(var:␣V,␣ctx:␣C,␣heap:␣H,␣hctx:␣HC)␣
CallGraphEdge(invo:␣I,␣callerCtx:␣C,␣toMeth:␣M,␣calleeCtx:␣C)␣
FldPointsTo(baseH:␣H,␣baseHCtx:␣HC,␣fld:␣F,␣heap:␣H,␣hctx:␣HC)␣
InterProcAssign(to:␣V,␣toCtx:␣C,␣from:␣V,␣fromCtx:␣C)␣
Reachable(meth:␣M,␣ctx:␣C)␣

Record(heap:␣H,␣ctx:␣C) = ?newHCtx:␣HC␣
Merge(heap:␣H,␣hctx:␣HC,␣invo:␣I,␣ctx:␣C) = ?newCtx:␣C␣
MergeStatic(invo:␣I,␣ctx:␣C) = ?newCtx:␣C

Figure 2.6: The core Datalog output relations and constructors of contexts.

Figure 2.6 shows the intermediate and output relations, as well as three constructor functions,
responsible for producing new contexts. Figure 2.7 shows the points-to analysis and call-
graph computation. We explain the contents of both figures in more detail below:

• There are five output or intermediate computed relations (VarPointsTo, . . ., Reachable7).
Every occurrence of a method or local variable in computed relations is qualified with
a context (i.e., an element of set C), while every occurrence of a heap object is qualified
with a heap context (i.e., an element of HC). The main output relations are VarPointsTo
and , encoding our points-to and call-graph results. The VarPointsTo relation links
a variable (var) to a heap object (heap). Other intermediate relations (FldPointsTo,
InterProcAssign, Reachable) correspond to standard concepts and are introduced for
conciseness. For instance, InterProcAssign (which encodes all parameter and return
value passing) unifies much of the treatment of static and virtual method calls.

• We model the parameter space of context-sensitive points-to analysis in a way that
allows for entirely different flavors of algorithms. The base rules are not concerned with
what kind of context sensitivity is used. The same rules can be used for a context-
insensitive analysis (by only ever creating a single context object and a single heap
context object), for a call-site-sensitive analysis, or for an object-sensitive analysis, for
any context depth. These aspects are completely hidden behind constructor functions
Record, Merge, and MergeStatic. The first two follow the usage and naming convention
of Smaragdakis et al. [142], while MergeStatic is new and used to differentiate the
treatment of static calls—this is a crucial element of our approach.

• Record is the function that creates a new heap context. It is invoked whenever an
object allocation site (input relation Alloc) is analyzed. Thus, Record is only used
in the rule treating allocation instructions (3rd rule in Figure 2.7). Record takes all
available information at the allocation site of an object and combines it to produce a

6Doop is publicly available online at https://bitbucket.org/yanniss/doop/.
7Reachable is somewhat of a special case, since we assume it is also used as an input relation: it needs

to initially hold methods that are always reachable, such as the programs’s main method, the constructor of
class java.lang.ClassLoader, and more. We ignore this technicality in the model, rather than burden our
rules with a separate input relation.
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InterProcAssign(to,␣calleeCtx,␣from,␣callerCtx)␣←␣
␣␣␣␣CallGraphEdge(invo,␣callerCtx,␣toMeth,␣calleeCtx),␣
␣␣␣␣FormalArg(toMeth,␣i,␣to),␣ActualArg(invo,␣i,␣from).␣

InterProcAssign(to,␣callerCtx,␣from,␣calleeCtx)␣←␣
␣␣␣␣CallGraphEdge(invo,␣callerCtx,␣toMeth,␣calleeCtx),␣
␣␣␣␣FormalReturn(toMeth,␣from),␣ActualReturn(invo,␣to).␣

Record(heap,␣ctx) = ?hctx,␣
VarPointsTo(var,␣ctx,␣heap,␣?hctx)␣←␣
␣␣␣␣Reachable(meth,␣ctx),␣Alloc(var,␣heap,␣meth).␣

VarPointsTo(to,␣ctx,␣heap,␣hctx)␣←␣
␣␣␣␣Move(to,␣from),␣VarPointsTo(from,␣ctx,␣heap,␣hctx).␣

VarPointsTo(to,␣toCtx,␣heap,␣hctx)␣←␣
␣␣␣␣InterProcAssign(to,␣toCtx,␣from,␣fromCtx),␣
␣␣␣␣VarPointsTo(from,␣fromCtx,␣heap,␣hctx).␣

VarPointsTo(to,␣ctx,␣heap,␣hctx)␣←␣
␣␣␣␣Load(to,␣base,␣fld),␣VarPointsTo(base,␣ctx,␣baseH,␣baseHCtx),␣
␣␣␣␣FldPointsTo(baseH,␣baseHCtx,␣fld,␣heap,␣hctx).␣

FldPointsTo(baseH,␣baseHCtx,␣fld,␣heap,␣hctx)␣←␣
␣␣␣␣Store(base,␣fld,␣from),␣VarPointsTo(from,␣ctx,␣heap,␣hctx),␣
␣␣␣␣VarPointsTo(base,␣ctx,␣baseH,␣baseHCtx).␣

Merge(heap,␣hctx,␣invo,␣callerCtx) = ?calleeCtx,␣
Reachable(toMeth,␣?calleeCtx),␣
VarPointsTo(this,␣?calleeCtx,␣heap,␣hctx),␣
CallGraphEdge(invo,␣callerCtx,␣toMeth,␣?calleeCtx)␣←␣
␣␣␣␣VCall(base,␣sig,␣invo,␣inMeth),␣
␣␣␣␣Reachable(inMeth,␣callerCtx),␣
␣␣␣␣VarPointsTo(base,␣callerCtx,␣heap,␣hctx),
␣␣␣␣HeapType(heap,␣heapT),␣
␣␣␣␣Lookup(heapT,␣sig,␣toMeth),
␣␣␣␣ThisVar(toMeth,␣this).␣

MergeStatic(invo,␣callerCtx) = ?calleeCtx,␣
Reachable(toMeth,␣?calleeCtx),␣
(invo,␣callerCtx,␣toMeth,␣?calleeCtx)␣←␣
␣␣␣␣SCall(toMeth,␣invo,␣inMeth),␣
␣␣␣␣Reachable(inMeth,␣callerCtx).

Figure 2.7: Datalog rules for the points-to analysis and call-graph construction.
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new heap context. The rule merely says that an allocation instruction in a reachable
method leads us to infer a points-to fact between the allocated object and the variable
it is directly assigned to. We denote variables created by a constructor function with
a question mark at the beginning of their name for emphasis (e.g., ?hctx).

• Merge and MergeStatic are used to create new calling contexts (or just “contexts”).
These contexts are used to qualify method calls, i.e., they are applied to all local vari-
ables in a program. The Merge and MergeStatic functions take all available information
at the call-site of a method (virtual or static) and combine it to create a new context.
These functions are sufficient for modeling a very large variety of context-sensitive
analyses, as we show in Section 2.13 (and later in Section 3.1).
Note that the use of constructors, such as Record, Merge, and MergeStatic, is not part
of regular Datalog and can result in infinite structures (e.g., one can express unbounded
call-site sensitivity) if care is not taken. All our later definitions statically guarantee
to create contexts of a pre-set depth. Also noteworthy is the fact that, each different
combination of parameters in a constructor will only create a new context if one does
not already exist—otherwise it just returns the pre-existing one.

• The rules of Figure 2.7 show how each input instruction leads to the inference of facts
for the five output or intermediate relations. The most complex rule is the second-to-
last, which handles virtual method calls (input relation VCall). The rule says that if
a reachable method of the program has an instruction making a virtual method call
over local variable base (this is an input fact), and the analysis so far has established
that base can point to heap object heap, then the called method is looked up inside
the type of heap and several further facts are inferred: that the looked up method is
reachable, that it has an edge in the call-graph from the current invocation site, and
that its this variable can point to heap. Additionally, the Merge function is used to
possibly create (or look up) the right context for the current invocation.

2.13 Standard Points-To Analyses: Instantiating the Model

By modifying the definitions of the Record, Merge and MergeStatic functions as well as
domains HC and C, one can create endless variations of points-to analyses. We next discuss
the most interesting combinations from past literature, before we introduce our own (in
Chapter 3). For every analysis variation we also list a common name abbreviation, which
we often use later.

Context-insensitive (insens). As already mentioned, our context-sensitive analysis frame-
work can yield a context-insensitive analysis by merely picking singleton C and HC sets (i.e., C
= HC = {?}, where ? is merely a name for a distinguished element) and constructor functions
that return the single element of the set:

Record(heap, ctx) = ?
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Merge(heap, hctx, invo, ctx) = ?

MergeStatic(invo, ctx) = ?

Note that the absence of contexts does not mean that the identity of input elements is
forgotten. Objects are still represented by their allocation site (i.e., the exact program
instruction that allocated the object) and local variables are still distinguished (e.g., by their
declaration location in the input program). The absence of context just means that there is
no extra distinguishing information. This can also be seen in the rules of Figure 2.7, where
the var and heap predicate arguments are present, separately from the context arguments.

1-call-site-sensitive (1call). A 1-call-site-sensitive analysis has no heap context to qual-
ify heap abstractions (HC = {?}) and uses the current invocation site as a context (C = I).
The following definitions describe such an analysis.

Record(heap, ctx) = ?

Merge(heap, hctx, invo, ctx) = invo
MergeStatic(invo, ctx) = invo

In words: the analysis stores no context when an object is created (Record) and keeps the
invocation site as context in both virtual and static calls.

1-call-site-sensitive with a context-sensitive heap (1call+H). The analysis is de-
fined similarly to 1call.8 The heap context as well as the main context consist of an invocation
site (HC = C = I).

Record(heap, ctx) = ctx
Merge(heap, hctx, invo, ctx) = invo
MergeStatic(invo, ctx) = invo

In words: the analysis uses the current method’s context as a heap context for objects
allocated inside the method. The invocation site of a method call is the context of the
method for both virtual and static calls.

1-object-sensitive (1obj). Object sensitivity uses allocation sites as context components.
A 1-object-sensitive analysis has no heap context (HC = {?}) and uses the allocation site of
the receiver object as context (C = H). The following definitions complete the description.

Record(heap, ctx) = ?

Merge(heap, hctx, invo, ctx) = heap
MergeStatic(invo, ctx) = ctx

8The standard convention in the points-to analysis literature is to name an analysis first according to the
context of methods, and, if a heap context exists, designate it in a suffix such as context-sensitive heap or
heap cloning.
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In words: the analysis stores no context for allocated objects. For virtual method calls, the
context is the allocation site of the receiver object. For static method calls, the context for
the called method is that of the calling method.
The above definition offers a first glimpse of the possibilities that we explore in this paper,
and can serve as motivation. In static calls, the context of the caller method is copied,
i.e., the receiver object of the caller method is used as the new context. Why not try
MergeStatic(invo, ctx) = invo, instead of the current MergeStatic(invo, ctx) = ctx?
Isn’t it perhaps better to use call-sites to differentiate static invocations, instead of blindly
copying the context of the last non-static method called? A simple answer is that invo is
an entity of the wrong type, since C = H. The only entity of type H we have available at a
static call-site is the current context, ctx. But if we let C = H ∪ I, we have a context type
that is a hybrid of both an allocation site and an invocation site, and which allows the above
alternative definition of MergeStatic. We explore this and other such directions in depth in
Chapter 3.

2-object-sensitive with a 1-context-sensitive heap (2obj+H). In this case, the heap
context consists of one allocation site (HC = H) and the context consists of two allocation
sites (C = H × H). The definitions of constructor functions are:9

Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = pair(heap, hctx)
MergeStatic(invo, ctx) = ctx

In words: the context of a virtual method (see Merge) is a 2-element list consisting of the
receiver object and its (heap) context. The heap context of an object (fixed at allocation,
via Record) is the first context element of the allocating method, i.e., the receiver object
on which it was invoked. Therefore, the context of a virtual method is the receiver object
together with the “parent” receiver object (the receiver object of the method that allocated
the receiver object of the virtual call). Again, static calls just copy the context of the caller
method.
Although there can be other definitions of the Merge function, yielding alternative 2-obj+H
analyses, it has been shown [142] that the above is the most precise and scalable. In intuitive
terms, we use as method context the most precise abstraction of the receiver object available
to the analysis.

2-type-sensitive with a 1-context-sensitive heap (2type+H). A type-sensitive anal-
ysis is step-by-step analogous to an object-sensitive one, but instead of using allocation sites

9We use auxiliary constructor functions like pair, triple and accessors like first, second, etc., with
the expected meaning, in order to construct and deconstruct contexts with 2 or 3 elements. This has the
added advantage that our context-depth is statically bounded—we never create lists of unknown length.
Since our most complex constructor is triple, the possible number of distinct contexts is cubic in the size
of the input program.
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(i.e., instructions) a type-sensitive analysis uses the name of the class containing the allo-
cation site. In this way, all allocation sites in methods declared in the same class (though
not inherited methods) are merged. This approximation was introduced by Smaragdakis et
al. [142] and yields much more scalable analyses at the expense of moderate precision loss
(as we also determine in our experiments).
In order to define type-sensitive analyses we need an auxiliary function which maps each
heap abstraction to the class containing the allocation.
CA : H → T

Now we can define a 2type+H analysis by mapping CA over the context of a 2obj+H analysis.
The heap context uses a type instead of an allocation site (HC = T) and the calling context
uses two types (C = T × T).

Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = pair(CA(heap), hctx)
MergeStatic(invo, ctx) = ctx

But just having a type as a context element does not tell us how good the context will be in
improving precision. Thus, the selection of type is of paramount importance. As discussed
in [142] using the dynamic type of the heap object would be an awful design decision—the
method under analysis already gives us enough information about the type of the receiver
object. A better approach is to use an upper bound of the dynamic type of the allocator
object.10

Other Analyses. The above discussion omits several analyses in the literature, in order
to focus on a manageable set with practical relevance. We do not discuss a 1-object-sensitive
analysis with a context-sensitive heap (1obj+H) because it is a strictly inferior choice to other
analyses (especially 2type+H) in practice: it is both much less precise and much slower. We
do not present other varieties of type-sensitivity for a similar reason. Deeper contexts or
heap contexts (e.g., 2call+H, 2obj+2H, 3obj, etc.) quickly make an analysis intractable
for a substantial portion of realistic programs and modern JDKs. In short, we focus on the
specific analyses (1call, 1call+H, 1obj, 2obj+H, 2type+H) that are of most practical interest:
they are quite scalable over a variety of medium-to-large programs, and no other analysis
supplants them by being uniformly better in both precision and performance.

10If the allocation occurs in a method of class C, the allocator object must be of type C or a subclass of
C that does not override the method containing the allocation site.
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Part I

Achieving Scalability
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3. HYBRID-CONTEXT SENSITIVITY

If you wanted to know about the Hy-
brid, why didn’t you just ask me?

The 12th Doctor - Doctor Who

Although in principle call-site and object sensitivity are incomparable, in practice the story
is quite clear. Call-site sensitivity has a long history, dating back to at least the ’80s. For a
long time, call-site sensitivity was considered synonymous with context sensitivity as a whole.
Object sensitivity was later introduced in 2002 [106] and within a decade it has become the
overwhelming choice of context sensitivity for object-oriented programs. Multiple studies
[16, 81, 84, 90, 108] have found object-sensitive analyses to yield excellent precision/cost
tradeoffs. Compared to call-site-sensitive analyses, an object-sensitive analysis of the same
context depth has always been advantageous, in terms of both speed and performance.
Given such past experimental results, it would seem that exploring combinations of call-site
and object sensitivity is futile. There is no tradeoff to exploit. Even though call-site-sensitive
analyses are occasionally faster to execute, this only comes at the expense of precision. To
achieve the same precision level as an object-sensitive analysis, call-site-sensitive analyses
have to suffer much higher cost. Additionally, coarser approximations of object sensitivity,
such as type sensitivity [142] have filled the performance gap and offered fast options for
cases when a full object-sensitive analysis is too expensive.
The question behind this chapter is whether the two kinds of context can be fruitfully
combined, given how dissimilar they are. In order to address this question, we map the
design space of hybrid call-site- and object-sensitive analyses and describe the combinations
that arise. Our work shows that the aforementioned conventional wisdom is false. This is
one of the rare occasions when the combination of two ideas supplants both: hybrid-context
sensitivity outperforms both object and call-site sensitivity in both precision and speed.
Naive hybrid combinations, such as always maintaining as context both call and allocation
sites, do not pay off, due to extremely high cost. For instance, keeping one call site and
one allocation site as context, in all places, yields a very expensive analysis, on average 3.9x
slower than a simple 1-object-sensitive analysis. Although such a combination will improve
precision, it is still lacking in comparison to, for example, a 2-object-sensitive analysis.
However, we find that more sophisticated hybrids are highly beneficial. Specifically, we
show that we can switch per-language-feature between a combined context and an object-
only context. For instance, contexts for static method calls are computed differently from
contexts for dynamic method calls. This approach yields analyses with both low cost and
high precision. Furthermore, adapting contexts per program feature defines a complex design
space and allows even further optimization. Design choices arise, such as, how should the
context adapt when a dynamic method call, or an object allocation are made inside a static
method?
The end result is analyses that closely track the precision of a combined call-site-and-object
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sensitivity while incurring none of the cost. In fact, the cost of the resulting analysis is
usually less (and occasionally much less) than that of just an object-sensitive analysis, due
to increased precision. This effect is shown to apply widely, to several variants of analyses.
Accordingly, this outcome establishes new sweet spots for the analyses most relevant for
practical applications: 1-object-sensitive, 2-object-sensitive with a 1-context-sensitive heap,
and analogous type-sensitive [142] analyses. For all of them, a selective hybrid context is
typically both more precise and faster than the original analysis.
In all, this chapter describes the following contributions:

• We introduce the idea of hybrid call-site and object sensitivity where the two kinds
of context are freely mixed and the mix is adjusted in response to analyzing different
program features. The goal is to achieve the precision of keeping both kinds of context
together, but at the same cost as keeping only one.

• We implement our approach in the Doop framework and apply it to a large variety of
algorithms with varying context depth.

• We show experimentally, over large Java benchmarks and the Java JDK, that hybrid-
context sensitivity works remarkably well. Our experiments establish that different
programming language constructs are best analyzed with different kinds of context.
The selective application of a combined context achieves the same effective precision
as keeping both contexts at all times, at a fraction of the cost, and is typically faster
even than keeping only an object context. For instance, in the practically important
case of a 2-object-sensitive analysis with a context-sensitive heap, we get an average
speedup of 1.53x and a more precise analysis. Similarly, for the simple and popular 1-
object-sensitive analysis, we get an average speedup of 1.12x combined with significant
increase in precision.

3.1 Hybrid-Context-Sensitive Analyses

We can now explore interesting combinations of call-site and object sensitivity. The design
space is large and we will be selective in our presentation and later experiments. Our choice
of analyses in this space leverages insights from past studies on what kinds of context are
beneficial.1 Such insights include:

• A call-site-sensitive heap is far less attractive than an object-sensitive heap. Generally,
adding a heap context to a call-site-sensitive analysis increases precision very slightly,
compared to the overwhelming cost.

1We have validated these insights with extensive measurements on our experimental setup, and have
generally explored a much larger portion of the design space than is possible to present in our evaluation
section.
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• When there is a choice between keeping an object-context or a call-site-context, the
former is typically more profitable. This is well validated in extensive past measure-
ments by Lhoták and Hendren [84], comparing call-site-sensitive and object-sensitive
analyses of various depths. In other words, call-site sensitivity is best added as extra
context over an object-sensitive analysis and will almost never pay off as a replacement
context, for an object-oriented language.

3.1.1 Uniform Hybrid Analyses

The first kind of context combination is a straightforward one: both kinds of context are
kept. We term such combinations uniform hybrid analyses. In the variants we describe,
a uniform hybrid analysis is guaranteed to be more precise2 than the base analysis being
enhanced. The question is whether such precision will justify the added cost.
The insight is that by using every information available at each point we can get more
precise analyses. Although that is proved to be true, experimental results also show that
this precision gain comes with an infeasibly high cost in most cases. Still, we present some
analyses that fully combine call-site and object sensitivity as a middle step for understanding
later improvements and also as a baseline when comparing more elaborate ways of context
combination.

Uniform 1-object-sensitive hybrid (U-1obj). Enhancing a 1-object-sensitive analysis
with call-site sensitivity results in an analysis with an empty heap context (HC= {?}) but with
a context that consists of both the allocation site of the receiver object and the invocation
site of the method (C = H × I). The following definitions describe the analysis:

Record(heap, ctx) = ?

Merge(heap, hctx, invo, ctx) = pair(heap, invo)
MergeStatic(invo, ctx) = pair(first(ctx), invo)

In words: a virtual method has as context the abstraction of its receiver object, extended
with the method’s invocation site. A static method keeps a context consisting of the most
significant part of the caller’s context and the method’s invocation site. Note that under
the above definitions, the context of a U-1obj analysis is always a superset of that of 1obj,
hence the analysis is strictly more precise.

Uniform 2-object-sensitive with 1-context-sensitive heap hybrid (U-2obj+H). A
2-object-sensitive analysis with a context-sensitive heap can be enhanced in the same way.
A heap context consists of an allocation site (HC = H) and a method context consists of two
allocation sites and one invocation site (C = H × H × I). The constructor definitions for the
analysis are:

2We use the term “more precise” colloquially. Strictly speaking, the analysis is guaranteed to be “at least
as precise” and not necessarily “more”.
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Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = triple(heap, hctx, invo)
MergeStatic(invo, ctx) = triple(first(ctx), second(ctx), invo)

In words: an object’s heap context is the receiver object of the method doing the allocation.
A virtual method’s context is its receiver object’s allocation site and context (the latter being
the allocation site of the object that allocated the receiver), followed by the invocation site
of the method. On a static call, the heap part (i.e., first two elements) of the method context
is kept unchanged, and extended with the invocation site of the call.
This analysis is also strictly more precise than the “plain” analysis it is based on, 2obj+H.
This is achieved partly by placing the receiver object’s allocation site in the most significant
position of the context triple. In this way, the Record function produces the same heap
context as 2obj+H on an object’s allocation. Alternative definitions are possible for the
same sets of contexts, C and HC. For instance, one could choose to place hctx in the most
significant position. Similarly, one could produce a hybrid analysis based on 2obj+H but
with a different kind of heap context, e.g., HC = I, therefore using the invocation site in
a method’s context as an allocation context. These definitions make decisively less sense,
however, per the insights mentioned earlier: invocation sites are rarely advantageous as heap
contexts, and, similarly, it is not reasonable to invert the natural significance order of heap
vs. hctx. (We have also verified experimentally that such combinations yield bad analyses.)
Note here that in deeper analyses where some elements from the context are used in order
to create new heap contexts, it is important which ones we choose to propagate. Different
choices might result in analyses that behave quite differently both in terms of performance
and precision. We can easily influence which context elements are selected for propagation,
by changing their ordering in the context.

Uniform 2-type-sensitive with 1-context-sensitive heap hybrid (U-2type+H).
Isomorphically to object sensitivity, we can enhance type-sensitive analyses with call-site
information in the same way. When applied to a 2-type-sensitive analysis with a context-
sensitive heap, this results in an analysis with a heap context of one type (HC = T) and
a context of two types and an invocation site (C = T × T × I)—mirroring the 2-object-
sensitive analysis with a context sensitive heap. The definitions are almost identical:

Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = triple(CA(heap), hctx, invo)
MergeStatic(invo, ctx) = triple(first(ctx), second(ctx), invo)

3.1.2 Selective Hybrid Analyses

Another approach to hybrid call-site- and object-sensitive analyses is to maintain a context
that varies inside the same analysis. We call such analyses selective hybrid analyses, as
opposed to the earlier “uniform hybrid” ones. In a selective hybrid analysis, the sets of
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contexts, C and HC, will be formed as the cartesian product of unions of sets. Depending on
the information available at different analysis points where new contexts are formed, we shall
create contexts of a different kind, instead of always keeping a combination of rigid form.
We have already hinted at such opportunities in Section 2.13: at a static method call, an
object-sensitive analysis does not have a heap object available to create a new context, hence
it can at best propagate the context of the caller. Yet, an invocation site is available and can
be used to distinguish different static calls, as long as we are allowed to use it as context.
This observation generalizes: static invocations are a language feature that benefits highly
from the presence of call-site-sensitive elements in the context. This is not hard to explain:
For object-sensitive analyses, when analyzing a static invocation, we do not have much
information to use in creating a new context, in contrast to a “normal” virtual invocation.
Consequently, it is beneficial to be able to use the invocation site as a differentiator of static
calls.
Selective hybrid analyses are among the most interesting parts of our work and, to our
knowledge, have never before arisen in the literature, far less specified, implemented, and
evaluated.

Selective 1-object-sensitive hybrid A (SA-1obj). Trying to selectively enhance a 1-
object-sensitive analysis (HC = {?}) with call-site sensitive elements, we are presented with
two options, relative to how contexts are created in static invocations. The first option is
quite simple: we can keep only a single context element in both virtual and static invocations.
Consequently, in virtual invocations the context will be an allocation site, but in static
invocations it will be an invocation site (C = H ∪ I). The definitions needed are the following:

Record(heap, ctx) = ?

Merge(heap, hctx, invo, ctx) = heap
MergeStatic(invo, ctx) = invo

Note that this analysis is not guaranteed to be more precise than the 1obj analysis it is based
on. Nevertheless, it should be an excellent reference point for comparison and insights: it
will suggest how much precision can be gained or lost by call-site sensitivity as a replacement
of object sensitivity in static method calls.

Selective 1-object-sensitive hybrid B (SB-1obj). The second option for a selective
hybrid enhancement of a 1-object-sensitive analysis is to add extra information to the context
of static calls. This means that context in virtual invocations is still an allocation site, but
context in static invocations now consists of both the allocation site copied from the caller
and the invocation site. In this way, C = H × (I ∪ {?}). That is, the context can be
either just an allocation site or an allocation site and an invocation site. (This could also be
written equivalently as C = H ∪ (H × I), but the earlier form streamlines the definitions of
constructors, as it makes all contexts be pairs, thus avoiding case-based definitions.) In this
way the constructor definitions become:
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Record(heap, ctx) = ?

Merge(heap, hctx, invo, ctx) = pair(heap, ?)
MergeStatic(invo, ctx) = pair(first(ctx), invo)

This analysis has a context that is always a superset of the 1obj context and, therefore, is
guaranteed to be more precise.

Selective 2-object-sensitive with 1-context-sensitive heap hybrid (S-2obj+H).
When dealing with deeper analyses, the possible design decisions start to vary. For ex-
ample, for a 2-object-sensitive analysis with a context-sensitive heap, an interesting choice is
to have allocation sites as heap contexts (HC = H), and for method contexts to keep standard
object-sensitive information for virtual calls but favor call-site sensitivity for static calls. The
constructor definitions for the above analysis are:

Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = triple(heap, hctx, ?)
MergeStatic(invo, ctx) = triple(first(ctx), invo, second(ctx))

(In this way, we have C = H × (H ∪ I) × (H ∪ I ∪ {?}).) Note the interesting behavior of
such an analysis: for virtual calls, the context is equivalent to that of 2obj+H. For the first
static call (i.e., from inside a virtually called method), the context is a superset of 2obj+H,
augmented by an invocation site. For further static calls (i.e., static calls inside statically
called methods), however, the analysis favors call-site sensitivity (both the last two elements
of context are invocation sites) and otherwise only remembers the most-significant element of
the object-sensitive context. (The latter is important for creating high-quality heap contexts,
when allocating objects.) It is interesting to see how this analysis fares relative to 2obj+H,
since the analyses are in principle incomparable in precision.

Selective 2-type-sensitive with 1-context-sensitive heap hybrid (S-2type+H). Fi-
nally, type-sensitive analyses can be enhanced with call-site sensitive information in much the
same way. Mirroring our choices in S-2obj+H, the S-2type+H analysis has heap context HC
= T and method context C = T × (T ∪ I) × (T ∪ I ∪ {?}). The constructor definitions
are isomorphic to the S-2obj+H analysis:

Record(heap, ctx) = first(ctx)
Merge(heap, hctx, invo, ctx) = triple(CA(heap), hctx, ?)
MergeStatic(invo, ctx) = triple(first(ctx), invo, second(ctx))

Other analyses. The above discussion does not nearly exhaust the space of hybrid com-
binations. Consider selective hybrids for a 2obj+H analysis: Many more design choices are
possible than the one shown. One could change the heap context into an invocation site,
or into a union of invocation and call-site (HC = H ∪ I). This combination is a bad choice,
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due to the poor payoff of call-site heap contexts. One could create context structures that
let call-site- and object-sensitive context elements freely merge, e.g., C = (H ∪ I) × (H ∪
I) × (H ∪ I ∪ {?}). This allows several different definitions of context constructors, but
has the drawback of diverging significantly from object sensitivity (i.e., allowing to skip even
the most-significant, object-sensitive context element), which misses the well documented
precision and performance advantages of object sensitivity, especially as a heap context.

3.2 Evaluation

We implemented and evaluated all aforementioned analyses using the Doop framework.
There are interesting and subtle aspects in our measurements, but the executive summary
is clear: uniform hybrid analyses are typically not good choices in practice: their precision
is offset by a very high performance cost. A relative exception is the uniform type-sensitive
hybrid analysis, U-2type+H, which, although higher-cost, is not prohibitively expensive
and offers a reasonable precision/performance tradeoff. Selective hybrid analyses, on the
other hand, are not just interesting tradeoffs but clear winners: they match or (usually)
outperform the object-sensitive analyses they are based on, while offering better precision,
closely approaching the precision of the much more costly uniform hybrids. Overall, the
best analyses in our evaluation set, both for highest-precision and for high performance with
good precision, are selective hybrids.
Our evaluation setting uses the LogicBlox Datalog engine, v.3.9.0, on a Xeon X5650 2.67GHz
machine with only one thread running at a time and 24GB of RAM (i.e., ample for the
analyses studied). We analyze the DaCapo benchmark programs (v.2006-10-MR2) under
JDK 1.6.0_37. This is a much larger set of libraries than earlier work [16, 142], which also
results in differences in measurements, since the numbers shown integrate application- and
library-level metrics. All runtime numbers are medians of three runs. As in other published
work [1, 142], jython and hsqldb are analyzed with reflection disabled and hsqldb has its
entry point set manually in a special harness.
For an illustration of the precision and performance spectrum, consider Figure 3.1, which
plots analyses on precision/performance axes. The figure plots execution time against pre-
cision in the “may-fail casts” metric, i.e., the number of casts that the analysis cannot
statically prove safe. Lower numbers are better on both axes, thus an analysis that is to
the left and below another is better in both precision and performance. Values that are
disproportionately high on the Y axis (i.e., large execution times) are clipped and plotted
at the top of the figure, with the actual number included in parentheses. (Note that the Y
axis starts at zero, while the X axis starts at an arbitrary point—we cannot know what is
the “ideal” reference value for this metric.)
In terms of pre-existing analyses, Figure 3.1 illustrates what has been past experience:
2obj+H is the most precise analysis, but often heavy. 1obj and 2type+H are both quite
fast, with 2type+H also showing very good precision, often approaching 2obj+H. The two
call-site-sensitive analyses (1call, 1call+H) are mostly shown for reference and to demon-
strate the insights discussed in Section 3.1. 1call is a fast analysis but vastly imprecise,
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Figure 3.1: Graphical depiction of performance vs. precision metrics for eight of our bench-
marks over all analyses. Lower is better on both axes. The Y axis is truncated for readability.
Out-of-bounds points are included at lower Y values, with their real running time in paren-
theses.
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while 1call+H is a bad tradeoff: its cost grows quite significantly relative to 1call without
much precision added—call-site sensitivity is a bad choice for heap contexts.
As can be seen, the selective hybrid analyses (SA-1obj, SA-1obj, S-2obj+H, S-2type+H)
usually offer an advantage over the corresponding base analysis (1obj, 2type+H, 2obj+H)
in both precision and performance. In fact, selective hybrids are typically imperceptibly
less precise than the corresponding uniform hybrid, yet much more precise than the base
analysis. For instance, the plot points for S-2obj+H are always barely to the right of those
for the theoretically more precise U-2obj+H (but significantly lower—uniform hybrids are
very expensive), while they are clearly to the left of 2obj+H.

3.2.1 Detailed Results

Detailed results of our experiments are presented in Tables 3.1 and 3.2. The tables show
precision and performance metrics for all analyses. The precision metrics are: (1) the average
points-to set size (i.e., average over all variables of their points-to sets sizes), (2) the number
of edges in the computed call-graph (which is typically a good proxy for the overall precision
of the analysis, in broad strokes), and the results of two client analyses: (3) the number of
virtual calls that could not be de-virtualized, and (4) the number of casts that could not
be statically proven safe. A combination of these four metrics gives a reliable picture of
the precision of an analysis. Note that the average points-to set size alone is not necessarily
reliable, because it is influenced by a small number of library variables with enormous points-
to sets. For comparison, the median points-to set size is 1, for all analyses and benchmarks.
Performance is shown with two metrics: (1) time and (2) total size of all context-sensitive
points-to sets. Although time is the ultimate performance metric, it is brittle: one can argue
that our time measurements are influenced by a multitude of implementation or environ-
ment factors, among which are the choice of underlying data structures, indexing, and the
overall implementation of the points-to analysis, especially since it is running on a Datalog
engine, with its own complex implementation choices hidden. The context-sensitive points-
to set size metric does not suffer from any such measurement or implementation bias. It
is the foremost internal complexity metric of a points-to analysis, and typically correlates
well with time, for analyses of the same flavor. Note that analysis implementations that
fundamentally differ from ours also try hard to minimize this metric in order to achieve peak
performance: Lhoták’s Paddle framework [81] is using binary decision diagrams (BDDs)
for representing relations. The best BDD variable ordering (yielding “impressive results”
[9]) is one that minimizes the total size of context-sensitive points-to sets. In short, it is
reasonable to expect that improvements in this internal metric reinforce the verdict of which
analysis yields better performance, not just in our setting but generally. Furthermore, the
size of context-sensitive points-to sets serves as a valuable indicator of the internally differ-
ent computation performed by various analyses: Analyses with almost identical precision
metrics (e.g., context-insensitive points-to set sizes, call-graph edges) have vastly different
context-sensitive points-to set sizes.
Since Tables 3.1-3.2 have a high information density, we guide the reader through some of
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over
8.8K
meths

over
33K
calls

over
1.7K
casts

over
10.2K
meths

over
31K
calls

over
2.8K
casts

1call

an
tlr

29.79 60999 1994 1049 110 16

bl
oa

t

43.96 70506 2138 2008 186 32.9
1call+H 29.58 60999 1994 1038 366 54.8 43.94 70506 2138 2008 1351 150.5

1obj 24.86 60194 1933 1074 166 14.3 41.26 69501 2076 2013 374 21.9
U-1obj 24.55 60194 1933 989 544 65 41.16 69501 2076 1928 2473 287.1
SA-1obj 24.90 60202 1936 996 142 10.5 41.32 69511 2080 1935 353 20.1
SB-1obj 24.61 60194 1933 994 182 17.3 41.18 69501 2076 1933 391 24
2obj+H 6.42 55548 1707 609 217 19.9 13.25 60726 1640 1403 5060 153.5

U-2obj+H 6.26 55548 1707 521 532 39.5 - - - - - -
S-2obj+H 6.27 55548 1707 526 162 13.9 13.10 60726 1640 1320 5045 149.8
2type+H 17.60 55850 1759 752 108 5.3 16.28 62115 1888 1720 142 11.4

U-2type+H 7.14 55765 1746 640 184 8.9 14.71 61753 1827 1611 353 30.3
S-2type+H 17.39 55850 1759 665 106 4.8 16.10 62115 1888 1633 140 11

over
15K
meths

over
35K
calls

over
3.5K
casts

over
9.3K
meths

over
23K
calls

over
2K
casts

1call

ch
ar
t

45.12 82156 2900 2500 288 49.6

ec
lip

se

21.84 53006 1515 1156 81 12.3
1call+H 45.11 82078 2897 2488 957 120.9 21.65 53001 1514 1155 478 61.5

1obj 40.80 81423 2821 2548 1240 62.5 18.65 52114 1429 1204 117 9.4
U-1obj - - - - - - 18.41 51935 1404 1089 406 42.3
SA-1obj 40.72 81075 2815 2385 1059 39.7 18.59 51958 1412 1096 105 7.6
SB-1obj 40.11 81012 2808 2378 1477 89.7 18.43 51936 1404 1094 126 10.8
2obj+H 5.30 59162 1610 1062 896 67.6 5.75 44900 1163 727 532 44.6

U-2obj+H 4.99 59142 1603 915 2363 115.7 5.60 44899 1163 616 1332 89.8
S-2obj+H 5.00 59152 1610 920 1199 53 5.61 44900 1163 621 359 32.3
2type+H 7.02 62290 1775 1498 211 13.3 7.93 45318 1233 879 152 13.6

U-2type+H 5.89 62172 1756 1309 362 21.3 6.41 45123 1202 744 278 24.4
S-2type+H 6.57 62280 1775 1343 276 16.5 7.61 45235 1229 766 135 11.5

over
10K
meths

over
26K
calls

over
2K
casts

over
8.5K
meths

over
21K
calls

over
1.9K
casts

1call

hs
ql
db

18.56 54619 1552 1360 90 9.6

jy
th
on

20.64 50494 1525 1140 88 10.4
1call+H 18.53 54619 1552 1360 332 39.8 20.57 50480 1524 1140 401 50.6

1obj 15.41 53726 1480 1385 218 13.9 18.21 49622 1448 1157 119 8.7
U-1obj 15.30 53724 1479 1302 1351 74.3 18.01 49614 1448 1087 375 43.2
SA-1obj 15.58 53730 1482 1320 183 9.6 18.19 49622 1453 1094 138 6.7
SB-1obj 15.32 53724 1479 1308 329 29.5 18.09 49614 1448 1092 138 10.8
2obj+H - - - - - - - - - - - -

U-2obj+H - - - - - - - - - - - -
S-2obj+H - - - - - - - - - - - -
2type+H 7.92 49421 1276 1031 195 13.7 8.55 43269 1268 909 731 52

U-2type+H 6.71 49319 1263 923 583 42.9 7.18 43138 1236 822 1363 118.4
S-2type+H 7.74 49421 1276 948 238 20.5 8.30 43269 1268 840 676 56.5

Table 3.1: Precision and performance metrics for all benchmarks and analyses, grouped by
relevance. Continues in Table 3.2.
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)

over
7.9K
meths

over
18K
calls

over
1.4K
casts

over
8.4K
meths

over
19K
calls

over
1.5K
casts

1call

lu
in
de

x

17.65 41992 1180 838 59 7.8

lu
se
ar
ch

18.64 45270 1360 939 63 8.7
1call+H 17.58 41992 1180 838 172 26.1 18.47 45270 1360 939 187 28.5

1obj 14.94 41103 1119 864 76 5.4 15.71 44371 1299 961 89 6.2
U-1obj 14.81 41103 1119 779 227 26.3 15.57 44365 1299 874 279 30.3
SA-1obj 14.97 41111 1122 786 70 4.1 15.79 44379 1302 884 84 5.3
SB-1obj 14.83 41103 1119 784 81 6.4 15.60 44371 1299 880 95 7.2
2obj+H 4.77 36580 894 494 131 11.1 4.71 39452 1065 506 183 13.2

U-2obj+H 4.55 36580 894 406 377 22.4 4.49 39446 1065 410 464 26.3
S-2obj+H 4.55 36580 894 411 105 7.2 4.50 39452 1065 416 158 10
2type+H 6.20 36889 949 622 75 4.5 6.13 39763 1122 662 76 4.2

U-2type+H 5.15 36796 932 507 132 7.6 5.10 39662 1103 537 137 7.8
S-2type+H 5.92 36889 949 535 73 3.5 5.86 39763 1122 568 74 3.6

over
9.2K
methss

over
21K
calls

over
2K
casts

over
10.5K
meths

over
26K
calls

over
2K
casts

1call

pm
d

19.94 49097 1249 1274 90 11.4

xa
la
n

25.50 57168 1976 1213 108 14.5
1call+H 19.82 49097 1249 1274 245 35.9 25.38 57168 1976 1213 470 59.8

1obj 17.36 48250 1187 1304 135 7.9 21.86 56412 1920 1236 189 15.5
U1obj 17.22 48250 1187 1215 420 42.6 21.59 56158 1905 1132 591 67.5
SA1obj 17.37 48258 1190 1222 128 6.9 21.84 56404 1921 1140 161 10.9
SB1obj 17.24 48250 1187 1220 142 9.2 21.69 56395 1918 1138 205 18.2
2obj+H 4.87 43068 937 844 167 13.2 5.48 50148 1619 718 4521 166.6

U2obj+H 4.68 43067 937 752 465 30.5 5.22 50054 1615 613 3364 171.7
S2obj+H 4.68 43067 937 757 145 10 5.23 50054 1615 619 1105 63.3
2type+H 6.35 43401 988 1000 114 4.5 7.52 50539 1677 946 168 10.2

U2type+H 5.28 43315 976 876 201 9.7 6.19 50432 1660 806 299 17.4
S2type+H 6.10 43400 988 909 113 3.9 7.16 50526 1677 844 161 9

Table 3.2: Precision and performance metrics for all benchmarks and analyses, grouped by
relevance. In all cases lower is better. Dash (-) entries are for analyses that did not
terminate in 90 minutes. The 4 precision metrics shown are the average size of points-to sets
(how many heap objects are computed to be pointed-to per-var), the number of edges in the
computed call-graph, the number of virtual calls whose target cannot be disambiguated by
the analysis, and the number of casts that cannot be statically shown safe by the analysis.
Reference numbers (e.g., total reachable casts in the program) are shown in parentheses in
the metric’s heading. These numbers change little per-analysis. Performance is shown as
running time and size of context-sensitive var-points-to data (the main platform-independent
internal complexity metric). Best performance numbers per-analysis-group are in bold.
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the most important findings below (see also a partial illustration in Figure 3.1).

• General observations. The analyses shown are in 4 groups of closely related anal-
yses: call-site sensitive, 1-object-sensitive, 2-object-sensitive with a 1-context-sensitive
heap, and 2-type-sensitive with a 1-context-sensitive heap. These analyses span a large
performance and precision spectrum. For instance, for the chart benchmark, the least
precise analysis, 1call, runs for under 5 minutes and computes an average points-to size
of over 45, while the most precise, U-2obj+H, runs for over 53 minutes and computes
an average points-to size of under 5. The difference in precision is also vividly shown in
the “may-fail casts” metric: the 1call analysis cannot prove 2500 casts safe, while the
U-2obj+H fails to prove safe just 915 casts (both numbers from a total of about 3.5K
reachable casts—the exact number varies slightly due to method reachability variation
per analysis).
Specifically, 1call, 1obj, and 2type+H are the fastest analyses in our set (for different
programs each), with each one offering significant precision enhancements relative to
the previous. 2obj+H is typically slower but manageable, and achieves very high
precision.

• Uniform hybrid analyses. Recall that uniform hybrid analyses (U-1obj, U-2obj+H,
U-2type+H) were defined to always keep a combination of object-sensitive and call-site-
sensitive context. As a result, the analyses are more precise than their respective base
analyses (1obj, 2obj+H, 2type+H), especially in the “may-fail casts” metric. However,
this precision comes at great cost: uniform hybrid analyses are often 3x or more slower
than their base analyses with twice as large, or more, context-sensitive points-to sets.
U-1obj and U-2obj+H are plainly bad tradeoffs in the design space: for a slight increase
in precision, the performance cost is heavy.
U-2type+H is a bit more reasonable: it achieves more significant precision gains and
its performance toll is often under 2x while still terminating comfortably for all our
benchmarks. In fact, a surprising finding was that U-2type+H is a tempting alternative
to 2obj+H for applications that need very high precision, given its good scalability. A
possible explanation is due to the specific nature of type-sensitive analyses: the class
in which a receiver object is allocated forms a good differentiator of behavior when
combined with a call site.

• 1obj hybrids. We presented two selective hybrids of a 1-object-sensitive analysis: SA-
1obj (which keeps either an allocation site or a call-site as context, but not both) and
SB-1obj (which always keeps an allocation site as context and occasionally adds a call-
site to it). They both turn out to be interesting analyses from a practical standpoint.
The former is consistently faster than the base 1obj analysis, with roughly similar
precision and occasionally (for the “may-fail casts” metric) higher precision. The size
of context-sensitive points-to sets also confirms that this is a “lighter” analysis that is
likely to cost less in any context. The SB-1obj analysis is always more precise than
1obj (as is statically guaranteed) for a slight extra cost. Indeed, SB-1obj is a good
approximation of the uniform hybrid analysis, U-1obj, in terms of precision, for a
fraction (typically less than a third) of the cost.

G. Kastrinis 72



Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees

• 2obj+H hybrids. The selective hybrid idea yields even more dividends when applied
to the very precise 2obj+H analysis. S-2obj+H is more precise than 2obj+H and only
very slightly less precise than the uniform hybrid, U-2obj+H. In terms of performance,
however, the analysis is typically well over 3 times faster than U-2obj+H, and signif-
icantly faster (an average of 53% speedup) than 2obj+H. This is interesting, given
the practical value of 2obj+H, since it establishes a new sweet spot in the space of
relatively scalable but highly precise analyses: S-2obj+H is both more precise than
2obj+H (especially for “may-fail casts”) and substantially faster.

• 2type+H hybrids. The 2type+H analysis variations are also highly interesting in
practice. This is an analysis space that yields excellent precision relative to its low
cost. There are few cases in which one might prefer some other inexpensive analysis
over 2type+H given the combination of precision and competitive performance of the
latter. As we saw, the uniform hybrid, U-2type+H, is an interesting tradeoff in this
space. The selective hybrid, S-2type+H, also performs quite well. It is just as fast or
slightly faster than the base analysis 2type+H, while also being more precise.

3.3 Summary

This chapter presented a comprehensive map for the exploration of context combinations in
points-to analysis, and used it to discover several interesting design points. Object sensi-
tivity and call-site sensitivity had never been fruitfully combined in the past, although the
idea is clearly tempting. We speculate that the reasons for the paucity of hybrid-context
sensitivity results have been a) the difficulty of having a good enough model for the space of
combinations and a convenient implementation to explore it; b) a belief that nothing fruitful
will come out of such a combination, because call-site sensitivity incurs a high performance
cost, which is more profitably spent on an extra level of object sensitivity. The latter in-
sight is mostly true, but only if one considers uniform hybrid analyses. As we saw, much of
the benefit of call-site and object-sensitive hybrids comes from allowing the context to vary
between pure object-sensitive and extended. The result of our work has been new sweet
spots, in both precision and performance, for some of the most practically relevant analysis
variations.
There are several interesting directions for further work that open up. First, our model gives
the ability for further experimentation, e.g., with deeper-context analyses. Furthermore, it is
interesting to examine if a hybrid context should perhaps change form more aggressively. The
Merge and MergeStatic functions could examine the context passed to them as argument and
create different kinds of contexts in return. For instance, the context of a statically called
method could have a different form (e.g., more elements) for a call made inside another
statically called method vs. a call made in a virtual method. Similarly, objects could
have different context, via the Record function, depending on the context form of their
allocating method. To explore this space without blind guessing, one needs to understand
what programming patterns are best handled by hybrid contexts and how. For deep contexts
this remains a challenge, as it is hard to reason about how context elements affect precision.
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(E.g., past work had to offer involved arguments for why the allocator object of the receiver
object of a method is a better context element than the caller object [142].) This challenge
is, however, worth addressing for the next level of benefit in context-sensitive points-to
analysis.
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4. INTROSPECTIVE ANALYSIS

Do what I do. Hold tight and pretend
it’s a plan!

The 11th Doctor - Doctor Who

Previous chapters already presented context sensitivity as a common way of pursuing pre-
cision and scalability in points-to analysis. An oft-remarked fact about context sensitivity,
however, is that even the best algorithms have a common failure mode when they cannot
maintain precision. Past literature reports that “the performance of a deep-context analysis
is bimodal” [142]; “context-sensitive analyses have been associated with very large numbers
of contexts” [83]; “algorithms completely hit a wall after a few iterations, with the number of
tuples exploding exponentially” [91]. The experimental results in chapter 3 (Tables 3.1-3.2)
show a failure to run a 2-object-sensitive analysis in under 90 minutes for 2 of 10 DaCapo
benchmarks, while 2 more benchmarks take more than 1,000 seconds, although most other
benchmarks of similar or larger size get analyzed in under 200 seconds.
Thus, when context sensitivity works, it works formidably, in terms of both precision and
performance. When it fails, however, it fails miserably, quickly exploding in complexity. In
contrast, context-insensitive analyses uniformly scale well, for the same inputs. Figure 4.1
vividly demonstrates this phenomenon for the DaCapo benchmarks, analyzed with the Doop
framework [16] under a context-insensitive (insens) analysis and a 2-object-sensitive analysis
with a context-sensitive heap (2objH). (The chart truncates the analysis time of the longest-
running benchmarks. Two of them, hsqldb and jython, timed out after 90 minutes on a
24GB machine, and would not terminate even for much longer timeouts.) As can be seen,
context-insensitive analyses vary relatively little in performance, while context sensitivity
often causes running time (and memory usage) to explode.

Figure 4.1: Comparison of execution times of context-insensitive analysis vs. 2-object-
sensitive with context-sensitive heap. The y-axis is truncated to 1 hour for readability.
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Faced with this unpredictability of context sensitivity, a common reaction is to avoid it,
favoring context-insensitive analyses, and, consequently, missing significant precision benefits
for well-behaved programs. Even worse, for some applications, eschewing expensive context
sensitivity is not an option—a context-insensitive analysis is just not good enough and even
an often inexpensive context-sensitive analysis (e.g., 2-type-sensitive with a context-sensitive
heap) fails to yield good precision. Reports from industry [24] and academic researchers [23]
alike reiterate that precise context sensitivity is essential for information-flow analysis, taint
analysis, and other security analyses.
We can ask ourselves, why does this scalability barrier arise? The core problem is that, for
some objects or methods, the points-to information is imprecise enough that more context
does not help, while incurring a heavy overhead [142]. Consider a method argument that
was found to point to n objects by a less precise analysis. Further analyzing the method
in c different contexts (or, equivalently, increasing context depth by 1) will ideally yield
n/c points-to facts per context, perfectly splitting the previous n-object points-to set, thus
yielding both precision and scalability. In the worst case, however, increasing the context
depth will result in c copies of n points-to facts each: the extra context depth will not have
yielded more precision, but will have multiplied the space and time costs. When this occurs,
the analysis cost explodes for greater context depths.
The focus of this chapter is on the detection and prevention of pathological behavior in
context-sensitive analyses, with minimal intervention. In this way, we achieve many of the
precision benefits of context sensitivity without sacrificing scalability. It does not seem
possible to know in advance (e.g., by identifying syntactic features of the program) which
program elements may be responsible for pathological behavior. Nevertheless, we argue
that it is possible to identify such elements with a scalable context-insensitive analysis. We
introduce the concept of introspective context sensitivity: during a first, context-insensitive,
analysis pass, the analysis observes symptoms indicating that the cost may get out of hand
for deeper context. This detects exactly the pathology identified above. In its simplest
form, the analysis will ask “which program sites currently have points-to information that
may grow too large for an extra level of context?” Using a configurable second pass1, such
sites will be re-analyzed with shallow context, even though the rest of the program will be
re-analyzed with a deeper context.
In intuitive terms, introspective context sensitivity performs a cost-benefit calculation, with
an emphasis on the potential cost of increasing context depth, since cost can be estimated
more reliably. Fairly simple—yet not always obvious—heuristics can estimate this cost well.
As a general pattern, this approach is familiar. Even in the context of points-to analysis,
the pattern of performing a coarse-grained analysis and using it to tune a finer-grained one
has been explored before, as in earlier refinement-based [150] or pruning [91] techniques.
Nevertheless, such past approaches differ from our approach in terms of both external appli-
cability and impact: they fundamentally apply to demand-driven (as opposed to all-points
on the entire program) analyses and they either do not target context depth or only apply
to specific kinds of context—related work in Section 8.2 includes a detailed discussion.

1In theory, this pattern could be repeated for more passes.
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The net outcome of our work is not a “first line of defense” analysis, but an “if all else fails”
analysis. Users are still better advised to first use traditional context-sensitive algorithms, in
the hope that these will scale well and provide good precision. When this fails, however, we
show that we can provide a highly reliable knob for filtering out worst-case performance at a
small cost in precision. Our experiments demonstrate that the user can “dial-in” scalability,
to the exact level required. For instance, as seen in Figure 4.1, a precise 2objH analysis fails
to run in under 90 minutes on a 24GB machine for 3 of our experimental subjects. However,
we can get an introspective context-sensitive analysis to scale to all benchmarks in under
12 minutes, while still gaining significant precision over a context-insensitive analysis. Yet
another introspective analysis scales to all but one benchmark in under 20 minutes, while
sacrificing a fraction of precision (keeping about 2/3 of the precision gains of a full 2objH
analysis). For call-site sensitive analyses, the gains are even more pronounced, with several
benchmarks exhibiting at least 300% speedups, without sacrificing nearly any precision.
Overall, this chapter describes the following contributions:

• We offer an approach to refining a context-sensitive analysis while avoiding its worst-
case cost. The approach relies on first running a context-insensitive analysis and using
its results to inform the application of context sensitivity. Much of the challenge
concerns the question of how to use this information, i.e., what heuristics yield good
behavior.

• We encode the approach in a simple form, by incremental modifications of a general
declarative analysis pattern. Therefore, our approach works on virtually any algorithm
expressed in this manner. Our implementation is on the Doop framework and already
applies to the over 30 analysis algorithms that the framework has to offer.

• We show experimentally the benefit of introspective context sensitivity. We quan-
tify the precision loss and scalability gains for different parameter settings and show
that there is a dial that users can tune, to select points in this spectrum. Even our
high-precision settings are effective in eliminating behavior outliers, showing that in-
trospective context sensitivity has core value: previously hopeless analyses suddenly
become feasible, for little precision loss. We believe that the result is to give confidence
that context-sensitive analyses can be used in virtually any setting and not just in the
nebulous “when they work well” case.

4.1 Formulation of Introspective Context Sensitivity

We demonstrate introspective context sensitivity via incremental changes to the existing
model for context-sensitive, flow-insensitive points-to analysis algorithms presented in Sec-
tion 2.12. As previously mentioned, the logical formalism of this model is very close to the
core components of our actual analysis implementation.

Input relations. Two additional input relations are added to those presented in Figure 2.5
and are used exclusively for the purposes of introspective context sensitivity. SiteToRefine
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and ObjectToRefine encode the program points (invocation site/method combinations, and
allocation sites) that will employ a different context abstraction from the rest.

SiteToRefine(invo:␣I,␣meth:␣M)␣
ObjectToRefine(heap:␣H)

Figure 4.2: Additional Datalog input relations expanding those of Figure 2.5.

Computed (output) relations. No additional output relations need to be added to those
of Figure 2.6.

Constructors for Context Sensitivity. As previously mentioned, the base rules of any
analysis are not concerned with what kind of context sensitivity is used. The context flavor
and depth aspects are completely hidden mainly behind constructor functions Record and
Merge. These functions are sufficient for modeling a very large variety of context-sensitive
analyses. In addition to those two, introspective context sensitivity adds two more construc-
tor functions to act as counterparts—RecordRefined and MergeRefined. They are directly
analogous to Record and Merge but just apply to different program points. These construc-
tors are the machinery for introspective context sensitivity: they vary the context sensitivity
of the analysis for a subset of the heap objects and methods.

RecordRefined(heap:␣H,␣ctx:␣C) = newHCtx:␣HC␣
MergeRefined(heap:␣H,␣hctx:␣HC,␣invo:␣I,␣ctx:␣C) = newCtx:␣C

Figure 4.3: Additional Datalog constructors of contexts that filter which objects and which
call-sites/target methods should have a different (i.e., more precise) context in introspective
context sensitivity.

Analysis logic. The rules for introspective context sensitivity supplement the existing logic
presented in Section 2.12. Out of the core nine rules, only two need to be enhanced with
duplicate versions, as shown in Figure 4.4. Each rule pair offers a version for the default
handling of context and another for the more precise handling. (In the full implementation,
there are some two-dozen rules that construct new contexts, instead of the two in the model,
and all are duplicated accordingly.)
The first pair considers the handling of object allocation, with the first rule applying when the
allocation is to be treated with no additional precision, whereas the second applies a more
refined context—whether the ObjectToRefine holds or not for the current allocation site.
The different handling of context is controlled via the Record and RecordRefined functions,
respectively.
The second pair is somewhat more involved but still follows the same reasoning, applied
to method invocations. The filtering is controlled via the SiteToRefine relation and the
different handling of (calling) context is done via the Merge and MergeRefined functions.
Therefore, we can effect any change we want to the context sensitivity of an analysis, on
a per-object/per-call-site basis, by supplying the right input relations ObjectToRefine or
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SiteToRefine and setting the appropriate constructors, RecordRefined and MergeRefined to
implement a different flavor/depth of context sensitivity. We discuss such options next.

Record(heap,␣ctx) = ?hctx,␣
VarPointsTo(var,␣ctx,␣heap,␣?hctx)␣←␣
␣␣␣␣Reachable(meth,␣ctx),␣Alloc(var,␣heap,␣meth),␣
␣␣␣␣!␣ObjectToRefine(heap).␣

//␣Duplicate␣rule,␣for␣introspective␣context␣sensitivity␣
RecordRefined(heap,␣ctx) = ?hctx,␣
VarPointsTo(var,␣ctx,␣heap,␣?hctx)␣←␣
␣␣␣␣Reachable(meth,␣ctx),␣Alloc(var,␣heap,␣meth),␣
␣␣␣␣ObjectToRefine(heap).␣

Merge(heap,␣hctx,␣invo,␣callerCtx) = ?calleeCtx,␣
Reachable(toMeth,␣?calleeCtx),␣
VarPointsTo(this,␣?calleeCtx,␣heap,␣hctx),␣
CallGraphEdge(invo,␣callerCtx,␣toMeth,␣?calleeCtx)␣←␣
␣␣␣␣VCall(base,␣sig,␣invo,␣inMeth),␣
␣␣␣␣Reachable(inMeth,␣callerCtx),␣
␣␣␣␣VarPointsTo(base,␣callerCtx,␣heap,␣hctx),
␣␣␣␣HeapType(heap,␣heapT),␣
␣␣␣␣Lookup(heapT,␣sig,␣toMeth),
␣␣␣␣ThisVar(toMeth,␣this),␣
␣␣␣␣!␣SiteToRefine(invo,␣toMeth).␣

//␣Duplicate␣rule,␣for␣introspective␣context␣sensitivity␣
MergeRefined(heap,␣hctx,␣invo,␣callerCtx) = ?calleeCtx,␣
Reachable(toMeth,␣?calleeCtx),␣
VarPointsTo(this,␣?calleeCtx,␣heap,␣hctx),␣
CallGraphEdge(invo,␣callerCtx,␣toMeth,␣?calleeCtx)␣←␣
␣␣␣␣VCall(base,␣sig,␣invo,␣inMeth),␣
␣␣␣␣Reachable(inMeth,␣callerCtx),␣
␣␣␣␣VarPointsTo(base,␣callerCtx,␣heap,␣hctx),
␣␣␣␣HeapType(heap,␣heapT),␣
␣␣␣␣Lookup(heapT,␣sig,␣toMeth),
␣␣␣␣ThisVar(toMeth,␣this),␣
␣␣␣␣SiteToRefine(invo,␣toMeth).
Figure 4.4: Datalog rules for different handling of context creation on a per-object/per-call-
site basis.
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4.2 How To Selectively Refine

The model of the previous section allows to easily configure context sensitivity in a large
variety of ways. For instance, some methods (or some call sites) can be analyzed with object
sensitivity while others are analyzed with call-site sensitivity, of any depth. One aspect to
determine, therefore, is the two analyses that will be used in different program points.
Another question is how to populate the ObjectToRefine and SiteToRefine input relations.
One could attempt to do so by mere syntactic inspection of the program. For example,
methods containing cast statements can be analyzed with a higher context depth. In our
work, we have failed to identify such syntactic heuristics that would yield benefit.
Instead, our introspective context sensitivity consists of running the analysis twice. The first
time, ObjectToRefine and SiteToRefine are empty and the Merge/Record context construc-
tors are set so that an inexpensive but scalable analysis is performed. In our experimental
setting, these constuctor functions return a unique constant value, ?, resulting in a context-
insensitive analysis:

Record(heap,ctx) = ?

Merge(heap, hctx, invo, ctx) = ?

The MergeRefined and RecordRefined constructors are set to implement an expensive context-
sensitive analysis, following the techniques of Chapter 3. Yet, these constructors are not
relevant in the first analysis run, since the rules employing them are predicated on having
elements in SiteToRefine and ObjectToRefine, respectively.
Subsequently, we use the results of the context-insensitive analysis to compute which program
elements to refine (i.e., populate the SiteToRefine and ObjectToRefine relations), and run
the analysis a second time. The result is that a subset of the program elements are analyzed
context-sensitively, while the rest are analyzed context-insensitively even during the second
analysis run. In practical terms, the former set is larger than the latter: we focus on
identifying a relatively small number of program elements that may disproportionately affect
analysis costs and to analyze them context-insensitively, while the majority of program
elements are analyzed context-sensitively.
Therefore, the main challenge is to identify a program client analysis (over the results of
a context-insensitive points-to analysis) to predict which program elements should not be
refined. Our criterion is based on cost rather than expected benefit, since the latter is very
hard to estimate in an all-points (as opposed to demand-driven) program analysis. There are
several cost metrics that we can mix-and-match to create introspective analysis heuristics:

1. Compute at every invocation site the cumulative size of all points-to sets of actual
arguments to the method call. (This is the argument in-flow of the method call.)
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2. Compute for every method the cumulative (or maximum, for a variant of the metric)
size of points-to sets over all local variables. (This is the method’s total points-to
volume or max var-points-to.)

3. Compute for each object (i.e., allocation site) the maximum (or total, for a variant
of the metric) field points-to set over all of its fields (This is the object’s max field
points-to, or total field points-to.)

4. Compute for every method the maximum max field-points-to (metric 3) among objects
pointed to by the method’s local variables. (This is the method’s max var-field points-
to.)

5. Compute for each object (i.e., allocation site) the number of local variables pointing
to it. (This is the object’s pointed-by metric.)

As can be seen, these metrics can vary in sophistication but all of them attempt to estimate
the cost that will be incurred if the same method or allocation site were to be analyzed
context-sensitively. Indeed, our emphasis is not on the sophistication of the metrics or on
their fine-tuning. Instead, it is on their simplicity and ease of composition so that one can
create parameterizable analyses: a knob for adjusting the precision/scalability tradeoff. For
example, we propose two heuristic combinations of these metrics:

Heuristic-A. Refine all allocation sites except those with a pointed-by (Met-
ric #5) higher than a constant K. Refine all method call sites except those
with either an in-flow (Metric #1) higher than a constant L or a max var-field
points-to (Metric #4) higher than a constant M .

Heuristic-B. Refine all method call sites except those that invoke methods
with a total points-to volume (Metric #2) above a constant P . Refine all object
allocations except those for which the product of total field points-to and pointed-
by (Metrics #3 and #5) exceeds a constant Q. The product of these two metrics
can be seen as an object’s total potential for weighing down the analysis.

These heuristics are themselves tunable, by adjusting the constant parameters. In the rest
of the chapter, when we refer to Heuristic-A in measurements, the values of K, L, M will
be 100, 100, and 200, respectively; when we refer to Heuristic-B, the values of P and Q will
both be 10000. The point of picking clear-cut reference numbers is to argue that the value
of the technique does not come from excessive tuning but from the underlying power of the
introspective analysis idea—even relatively large variations of these numbers make scarcely
any difference in the total picture of results over multiple programs.

Intuition. The main insight behind our Heuristic-Approach is that there are many pro-
gram elements whose analysis cost is vastly disproportionate to their importance. If such
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elements are analyzed less precisely, the analysis will avoid significant burden without in-
curring large precision losses. The above two heuristics try to estimate “disproportionate
cost” but have no way of estimating the “importance” of a program element. It would be
an interesting direction for future work to estimate this importance, i.e., to define metrics
that capture the extent of the impact of a program element’s precision on all other program
elements.
Furthermore, a program element with very large cost, in terms of associated points-to facts,
may be hopeless for good enough precision anyway. On the other hand, the above intuition
could potentially unfold the other way: it is possible that context sensitivity can produc-
tively distinguish seemingly-imprecise program elements (e.g., methods with large cumulative
points-to sets, but also many callers) and maintain precision.

Implementation. The above metrics and heuristics can be easily implemented as short
analyses over the result of a context-insensitive points-to analysis. For instance, the im-
plementation of the in-flow metric (#1) is the following Datalog rules, which define an
intermediate predicate and aggregate over it. (“_” is a nameless variable denoting any value,
and “{...}” denotes an aggregate operation over the relations inside the curly brackets —in
our case a total count of matching tuples.)

HeapsPerInvocationPerArg(invo,␣arg,␣heap)␣←␣
␣␣␣␣CallGraphEdge(invo,␣_,␣_,␣_),
␣␣␣␣ActualArg(invo,␣_,␣arg),
␣␣␣␣VarPointsTo(arg,␣_,␣heap,␣_).

InFlow(invo,␣?result)␣←␣
␣␣␣␣COUNT{ HeapsPerInvocationPerArg(invo,␣_,␣_) } = ?result.

4.3 Evaluation

Our evaluation setting uses the LogicBlox Datalog engine, v.3.9.0, on a Xeon E5530 2.4GHz
machine with only one thread running at a time and 24GB of RAM. We analyze the DaCapo
benchmark programs (v.2006-10-MR2) with Open JDK 1.6.0_24. We run all benchmarks
with default Doop settings, including full reflection support. We selected a priori 6 of
the Dacapo benchmarks as our experimental subjects: these are the programs that exhibit
scalability problems based on past literature (e.g., Chapter 3). Other benchmarks typically
run in half the time of the fastest benchmark of our set for deep context-sensitive analyses.
Since our technique is explicitly not a “first line of defense”, benchmarks that are already
certain to scale are out of scope.
The results of our experiments are shown in Figures 4.5, 4.6, and 4.7. We evaluate two
variants of introspective context sensitivity corresponding to Heuristic-A and Heuristic-B
from Section 4.2. We test the three main flavors of context sensitivity: object sensitivity
[105, 106], call-site sensitivity [137, 140], and type sensitivity [142]. The three flavors have
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Figure 4.5: Performance and precision (3 separate metrics: calls that cannot be devirtual-
ized, reachable methods, casts that cannot be eliminated) for introspective context-sensitive
variants of a 2objH analysis, compared with baselines (2objH and insensitive).
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Figure 4.6: Performance and precision (3 separate metrics: calls that cannot be devirtual-
ized, reachable methods, casts that cannot be eliminated) for introspective context-sensitive
variants of a 2typeH analysis, compared with baselines (2typeH and insensitive).
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Figure 4.7: Performance and precision (3 separate metrics: calls that cannot be devirtual-
ized, reachable methods, casts that cannot be eliminated) for introspective context-sensitive
variants of a 2callH analysis, compared with baselines (2callH and insensitive).
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very different profiles of practical use and scalability, as detailed next.

4.3.1 Object Sensitivity

Deep-context, object-sensitive analyses are the most precise in practice, but do not always
scale well. Starting from a 2-object-sensitive analysis with a 1-context-sensitive heap (2objH),
we define our two introspective versions (2objH-IntroA and 2objH-IntroB for Heuristic-A and
Heuristic-B, respectively). Figure 4.5 plots first the execution time and then three precision
metrics for all analyses. In all cases lower is better. There is no real “metric” for precision,
since each client may have unique needs, but our three metrics together should yield a
reasonable projection of precision. Note that since there is no “ground truth” for the ideal
value of precision metrics, their chart scales are arbitrary (and differences are not as visually
pronounced as could be because of plotting multiple benchmarks on a single chart) but the
insensitive/2objH analyses serve as upper/lower reference markers in practice. We use a
90 minutes timeout. The jython and hsqldb benchmarks did not terminate for 2objH, and
jython did not terminate for 2objH-IntroB either. We indicate non-termination with full
bars in the top (time) chart and the absence of bars in the bottom three (precision) charts.
As can be seen in Figure 4.5, the two introspective variants scale much better than the full
2objH analysis. Indeed, IntroA scales to all benchmarks, while showing significant precision
gains over an insensitive analysis. IntroB is even more precise: it covers more than two-thirds
of the precision advantage of 2objH over an insensitive analysis for most benchmarks and
precision metrics, while scaling significantly better.

4.3.2 Type Sensitivity

Type sensitivity is designed with the explicit purpose of providing more scalability than
object sensitivity but in a very different manner: instead of avoiding high context depths,
type sensitivity makes each context element coarser. Thus it is doubly interesting to see if
introspection can add benefit to type-sensitive analyses. Type sensitivity is not immune to
the pathologies of object sensitivity: for instance, in our benchmark set it does not scale to
jython.
Figure 4.6 shows our results, plotting variants of a 2-type-sensitive analysis with a 1-context-
sensitive heap (2typeH), and following the same conventions as earlier. (The insensitive
baseline is inherited and not re-run.) As can be seen, the IntroB version scales to all programs
while typically maintaining very good precision—often close to the full 2typeH. The IntroA
version has the desirable feature of near-perfect scalability: its maximum runtime for any
benchmark is 360 seconds. At the same time it exhibits precision gains compared to a
context-insensitive analysis, although these are noticeably lower than the precision gains of
IntroB.
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4.3.3 Call-site Sensitivity

Call-site sensitivity is the traditional flavor of context sensitivity—a virtual synonym for the
term. In practice, call-site sensitivity is quite good for some analysis clients but almost never
scalable at context depths greater than 1.
As Figure 4.7 shows, introspective context sensitivity performs remarkably well when applied
to a 2-call-site-sensitive analysis with a 1-context-sensitive heap (2callH). The base 2callH
analysis does not terminate for 4 out of 6 of our benchmarks, while introspective analyses
terminate either for all (IntroA) or for nearly all (5 out of 6 for IntroB). Furthermore, IntroB
seems to achieve the full precision of 2callH for the two benchmarks for which the latter
yields results, and for all different metrics! Combined with the across-the-board scalability
gains shown in the timing chart, this confirms the effectiveness of introspection for tuning out
extreme analysis costs. IntroA is not far behind in precision, obtaining more than two-thirds
of the precision gains of IntroB for most metrics and benchmarks.

4.3.4 Discussion

The above timings of introspective context sensitivity do not include the cost of first running
a context-insensitive analysis, and other timing overheads (relatively constant at about 100
seconds) related to computing the objects and sites to refine and re-running an analysis.2
We did not include these numbers in the timings in order to keep the presentation simpler
but also because (a) our emphasis is on scalability and not on small-scale speed gains—we
consider small differences in timings, e.g., in the chart and eclipse benchmarks of Figure 4.5,
to be negligible for our purposes; and (b) these constant overheads can be factored out—e.g.,
with minor engineering we could have incurred them only once per benchmark and not once
per run of every introspective analysis variation.
Based on our experimental results, introspective context sensitivity achieves its goal: it offers
a knob for users to select points in the scalability/precision spectrum. The tradeoffs of cost
and precision exhibited by Heuristic-A and Heuristic-B are illustrative. Not only do these
heuristics yield different options (more precision vs. more scalability) but they are also very
consistent in their tradeoff, throughout multiple benchmarks and analysis flavors.
Finally, note that we used identical introspection heuristics (Heuristic-A and Heuristic-B)
with the same constants (see Section 4.2) for all three context sensitivity flavors and for all
benchmarks. This suggests that there are significant opportunities for further tuning: dif-
ferent heuristics can be used, the constants can be optimized, the constants or the heuristics
can be adapted per-benchmark or per-context flavor. However, the goal of our experiments
is not to squeeze out a few percentage points of speedup but to show that the simple idea
of introspective context sensitivity can easily offer very useful tradeoffs in scalability and
precision.

2Our current implementation has to export facts to disk and re-import them back in memory, as well as
regenerate a program representation in order to re-run an analysis.
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4.4 Summary

We introduced introspective context sensitivity: an approach to making context-sensitive
analyses scale. The approach consists of defining an analysis with two separate kinds of
context. Each program element is analyzed with one kind, selected based on external input.
Then, by first running an inexpensive context-insensitive analysis, we can identify program
elements that should be treated with a more precise context and others that should be
treated less precisely to avoid an explosion in complexity. Our technique applies to any
kind of context abstraction and yields scalability à la carte: the user can select a scalability
profile and achieve it for a price in precision. As shown in our experiments, this price is not
too steep. The precision loss of introspective context sensitivity can be minuscule (as is for
call-site-sensitive analyses), while the scalability gain is substantial.
We believe that introspective context sensitivity is a big step forward in pointer analysis. It
is not just an effective technique, but an effective technique that addresses the major current
pain point in practical applications of points-to analyses.
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Part II

Achieving Strong Soundness
Guarantees
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5. MUST-ALIAS ANALYSIS: LOGICAL MODEL

Logic, my dear Zoe, merely enables one
to be wrong with authority.

The 2nd Doctor - Doctor Who

As previously mention at the beginning of Chapter 1, alias analysis is closely related to
pointer analysis with the difference being that the main goal of alias analysis is finding
aliasing among program expressions whereas the main goal of pointer analysis is to reason
about the objects that program expressions may point to. In both case, one can be employed
to support the reasoning of the other.
The vast majority of pointer analysis techniques that have appeared in the recent research
literature (e.g., [9, 57, 69, 105, 150, 163, 167]) are may-analyses. That is, the techniques
attempt to over-approximate an unattainable, fully precise result (recall Section 2.6). All
possible aliasing expressions are guaranteed to be included in the outcome of a may-alias
analysis. All possible abstract objects that may be referenced by a variable are included
in the variable’s may-point-to set. However, spurious inferences—which will never occur in
program execution—may also be included in the analysis output.
In contrast, an under-approximate, must-analysis (or definite-analysis) is often desirable.
A must-analysis computes aliasing or points-to relationships that are guaranteed to always
hold during program execution, at the cost of missing some inferences. In practice, a must-
alias analysis is more probable than a must-points-to analysis. Aliasing relationships are
more generally provable from local inspection of the program text, whereas points-to facts
are harder to establish in a conservative must- fashion. The difficulty is dual: First, the
allocation sites of objects are often far from their use sites, making the establishment of must-
points-to relationships unlikely. Second, must-points-to reasoning requires careful modeling
of abstract vs. concrete objects. For instance, for techniques such as strong updates (i.e.,
replacing the value of an object field at a store instruction) it is not sufficient to know
the abstract object that the base expression must-points-to, since the abstract object may
conflate many concrete objects during program execution (e.g., in a loop), and only one of
them will have its field updated.
A must-alias analysis is typically flow-sensitive, i.e., it computes information per-program-
point, respecting the control-flow of the program (recall Section 2.4). It offers several appli-
cations:

• It is useful for optimizations—e.g., constant folding, common subexpression elimina-
tion, and register allocation;

• It can increase the precision of bug detectors (that traditionally have a high false-
warnings rate): Nikolić and Spoto [110] report that a must-alias analysis significantly
increases the precision of both a null-reference detector (46% fewer warnings) and a
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non-termination detector (11% fewer warnings). Earlier work has reported similar
benefits [98];

• It can be used as an internal component as part of a more complex analysis. For
instance, must-alias results may enable an analysis to perform “strong updates” at
instructions that modify the heap. Earlier work has used must-alias analysis to similar
benefit [39, 67];

• It can be invaluable for better program understanding; the results of a must-inference
are guaranteed facts, of immediate value to the human programmer.

To illustrate must-alias reasoning, consider the code example in Figure 5.1. Even at this
size, inspecting the program requires human effort. The output consists of must-alias pairs:
expressions that are guaranteed to point to the same object (denoted by “∼”). In this
example, a2.next and a1 form an alias pair after line 8. (Other alias pairs include {a1.next
∼ null} after line 7, {a2.next.next ∼ a2} after line 11, and more.) Alias pairs are
established by direct variable assignments—which are plentiful in a compiler intermediate
language, although less so in original source code—as well as heap stores and loads. Other
aliasing relationships hold throughout the program. Establishing them often requires some
inter-procedural reasoning—e.g., to see the aliasing effects of the constructor call on lines 8,
9, or 10. Constructors feature prominently in the example, since they are one of the best
sources of must-alias information in a typical program.
A must-alias analysis has to report aliases only when they are guaranteed to hold, and needs
to invalidate them on store instructions or method calls that may change the fields of objects
pointed by sub-expressions in an alias pair.

1 class Node {
2 Node next;
3 Node(Node next) { this.next = next; }
4 void wrap() { next.next = this; }
5 }
6

7 void main() {
8 Node a1 = new Node(null);
9 Node a2 = new Node(a1);

10 Node a3 = new Node(null);
11 a1.next = a3;
12 a2.wrap();
13 }

Figure 5.1: Code snippet for illustrating must-alias reasoning.

For example, line 10 invalidates the alias pair {a1.next ∼ null}—regardless of whether
new alias pairs are established, via inter-procedural reasoning. However, the analysis is
sound (i.e., it remains a must-analysis—recall Section 2.7) if it also invalidates alias pairs for
expressions involving a2.next or a3.next. The base specification of a must-alias analysis
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has to integrate such soundness safeguards, while interplay with other analyses (e.g., a may-
not-alias analysis) can lead to more inferences.
This chapter presents a simple declarative model of a must-alias analysis over access paths
(i.e., expressions of the form “var(.fld)*”). The model underlies the implementation of
must-alias analysis in Doop, in which must-alias analysis is employed as an enhancer of its
standard array of may-analyses (e.g., in order to enable “strong updates”). The model is
interesting in a few different ways:

• It is an instance of a flow-sensitive analysis in Datalog. As such, it introduces idioms
and patterns also used in a multitude of other (current or future) analyses in Doop.

• The analysis is minimal, yet models the core features of a general must-alias analysis
in a handful of declarative rules.1 In this way, the analysis semantics are easily under-
stood and can be further enhanced. The rules allow configurability and employ several
techniques for conciseness and power.

• The use of context, in particular, is crucial: the analysis applies context variables, much
like in traditional may analyses (e.g., [70, 141] and what was presented in previous
chapters), yet uses the context highly unconventionally. Context is used as “fuel”, to
guarantee the “must” nature of the analysis: must-alias inferences are propagated inter-
procedurally, with context extended for every call. When maximum context depth is
reached, inferences cannot propagate any further.

• A major benefit of the analysis is its incrementality. In a well-specified must-alias
analysis, soundness is not compromised if only a portion of the program-under-analysis
or its libraries are available. This key element is emphasized in our declarative model.
We control the program points where the full analysis applies and leverage context
sensitivity to allow analysis of other program points. In essence, our analysis infers
normal alias pairs for a user-selected core part of the program, and infers conditional,
context-qualified alias pairs for other parts that interact with the core program.

• The analysis gives rise to several observations, concerning the representation of equiv-
alence relations in a Datalog engine, and the need for implicit encoding of aliasing.

5.1 Logical Model

We demonstrate a minimal Datalog model of an inter-procedural must-alias analysis via
changes to the existing model for context-sensitive, flow-insensitive points-to analysis algo-
rithms presented in Section 2.12. As in previous chapters, the logical formalism of this model
is very close to the core components of our actual analysis implementation.
But contrary to previous chapters, we need to model a flow-sensitive analysis and this dictates
certain alterations on our input language. Mainly, we assume a static single assignment

1The analysis core presented here is the basis of a much larger, full-fledged (over 300 Datalog rules)
must-alias analysis implementation in Doop.
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(SSA) form on our intermediate representation. Recall from Section 2.5 that every local
variable is assigned exactly once and for variables with multiple assignments in the original
source code, the merging of their values is indicated by a phi-node in the SSA representation.
For the purposes of static analyses that do not track path conditions, it is not relevant which
of the two (or more) values is actually picked, but it is important (for flow-sensitive variants)
that such merging points are indeed modeled accordingly.

Input domain. Figure 5.2 demonstrates the needed alterations in the domain of our input
language (presented in Figure 2.4).

A is an access path of the form V.(F)*

Figure 5.2: Additions to the domain of our input intermediate language.

Input relations. Our input relations, shown in Figure 5.3, are similar to those presented
in Figure 2.5 with the main difference that they also encode of the actual instruction they
represent, in order to enable a flow-sensitive reasoning. Regarding invocations, we mainly
focus on virtual calls (simplified to Call instead of VCall) and assume a program in a single-
return form, for each method. In addition, the Phi relation captures phi-node instructions,
where values of multiple “from” vars merge into local var to. The Next relation expresses
directed edges in the control-flow graph (CFG) meaning that instruction j is a successor of
instruction i. Relation InMethod encodes the obvious semantics of method meth containing
instruction i.
The last two input relations are somewhat more advanced. Resolved is a predicate that
can be computed by an external call-graph or may-point-to analysis: it holds variables
that are determined to only point to objects with a unique dynamic type, so that virtual
method calls are resolved. (Note that the form of the predicate is context-insensitive, yet
the analysis that computes it may be context-sensitive, for increased precision—the contexts
are merely projected out.) Finally, RootMethod is a predicate over methods, in order to start
must-alias reasoning from a user-selected set of methods. As will be explained bellow, our
analysis algorithm will venture beyond these root methods only to the extent that its context
constructor allows.

Computed (output) relations.
Figure 5.4 shows the computed relations of our must-alias analysis. The first relation,
MustAlias, is the main output of the analysis and is defined on access paths. The se-
mantics are that access path ap1 aliases access path ap2 (i.e., they are guaranteed to point
to the same heap object, or to both be null) right after program instruction i, executed
under context ctx, provided that the instruction is indeed executed under ctx at program
run-time. The two access paths are said to form an alias pair.
The other main computed relation represents intermediate results of the analysis. Relation
MustCallGraphEdge holds information for fully-resolved virtual calls: invocation site invo
will call method meth under the given (caller and collee) contexts.
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Move(i: I, to: V, from: V) // i: to = from
Load(i: I, to: V, base: V, fld: F) // i: to = base.fld
Store(i: I, base: V, fld: F, from: V) // i: base.fld = from
Call(i: I, base: V, sig: S) // i: base.sig(. . . )
FormalReturn(i: I, meth: M, ret: V) // i: return ret;

Phi(i: I, to: V, from1: V, ...) // i: to = φ(from1, . . . )
Next(i: I, j: I)
InMethod(i: I, meth: M)

Resolved(var: V, type: T)
RootMethod(meth: M)

Figure 5.3: The (altered) input Datalog relations describing the program under analysis.

MustAlias(i:␣I,␣ctx:␣C,␣ap1:␣A,␣ap2:␣A)␣
MustCallGraphEdge(invo:␣I,␣callerCtx:␣C,␣meth:␣M,␣calleeCtx:␣C)␣

AP(access␣path␣expression) = ?ap:␣A␣
PrimeAP(ap:␣A) = ?newAp:␣A␣
UnprimeAP(ap:␣A) = ?newAp:␣A␣
NewContext(invo:␣I,␣ctx:␣C) = ?newCtx:␣C

Figure 5.4: The core Datalog output relations and constructors of access paths and contexts.

Constructors.
We assume a constructor function AP that produces access paths. For instance, the expression
“AP(var.fld1.fld2) = ?ap” means that the access path ?ap has length 3 and its elements
are given by the values of bound logical variables var, fld1 and fld2. We shall also use
AP as a pattern matcher over access paths. For example, the expression “AP(_.fld) = ap”
binds the value of logical variable fld to the last field of access path ap. (_ is an anonymous
variable that can match any value.)
Additionally, we manipulate access paths with two functions, PrimeAP and UnprimeAP. PrimeAP
takes an access path and returns a new one by “priming” the base variable of the original.
UnprimeAP reverses this mapping. For instance, PrimeAP(“v.fld”) = “v’.fld”. UnprimeAP
only applies to access paths with primed variables as their base—otherwise the rule fails
to match. Priming and unpriming of access paths is done at method call and return sites,
to mark access paths that arrive from callers. This is necessary for avoiding confusion of
variables in recursive calls.
Similarly, we construct new contexts using function NewContext. The definition of this con-
structor serves to configure the analysis for different context settings, as discussed later. If
NewContext does not return a value (e.g., because the maximum context depth has been
reached), the current rule employing the constructor will not produce facts. The constant
All is used to signify the initial context.
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Constructors of access paths and contexts are much like other relations. In practical analyses,
the space of access paths and contexts is made finite, by bounding their length. Therefore, all
possible access paths and contexts could be computed prior to the analysis start and supplied
as inputs. However, this is unlikely to be desirable in practice, for efficiency reasons, and
is limiting in principle: by separating constructors, our model also allows analyses with
unbounded access paths and contexts.

5.2 Analysis Logic

We have broken down our analysis model in four groups of rules. For conciseness, we have
employed some syntactic sugar (also recall Section 2.11 regarding disjunction and negation),
which straightforwardly maps to more complex Datalog rules:

• We use the shorthand P* for the reflexive, symmetric, transitive closure of relation P,
which is assumed to be binary. For larger arities, underscore (_) variables are used
to distinguish variables of a relation that are affected by the closure rule. Specifi-
cally, MustAlias*(i, ctx, _, _) denotes the reflexive, symmetric, transitive closure
of relation MustAlias with respect to its last two variables.

• We introduce a for-all syntactic sugar that hides a Datalog pattern for enumerating
all members of a set and ensuring that a condition holds universally.2 An expression
“∀ i: P(i)→ Q(i, ...)” is true if Q(i, ...) holds for all i such that P(i) holds.
Such an expression can be used in a rule body, as a condition for the rule’s firing.
Multiple variables can be quantified by a ∀. Variables not bound remain implicitly
existentially quantified, as in conventional Datalog. However, the existential quantifier
is interpreted as being outside the universal one. For instance, “∀ i, j: P(i, j, k)
→ Q(i, j, k, l)” is interpreted as “there exist k, l such that for all i, j . . . ”.

Base Rules. Figure 5.5 lists six rules: one to initialize interesting analysis contexts and
five for must-alias inferences. The former rule employs configuration predicate RootMethod.
This predicate designates methods that are to be analyzed unconditionally: the inference
is made under the special context value All. For a non-root method, aliasing inferences
can only be made under a specific context, for which the method has been computed to be
reachable. The results can then be used by the caller that produced that context. They
are not, however, established as unconditional results (in an All context), which would be
usable independently.
The above mechanism controls the application extent of the analysis. Recall that incremen-
tality is a key benefit of a must-alias analysis. Therefore, it is desirable to be able to apply
the algorithm as locally as the user may desire. The context mechanism is then used to

2Emulating universal quantification in Datalog requires ordered domains. In practice, this is not a restric-
tion. An arbitrary ordering relation (e.g., by internal id of input facts as assigned by the implementation)
can be imposed on all our domains.
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explore other code, but only to the extent that such exploration benefits the root methods
intended for analysis.
The next four MustAlias rules handle one instruction kind each: Move, Phi, Load, and Store.
The Move rule merely establishes an aliasing relationship between the two assigned variables,
at the point of the move instruction. The Phi rule promotes aliasing relationships that hold
for all the right-hand sides of a phi-node instruction to its left hand side. The Load and
Store rules establish aliases between the loaded/stored expression, base.fld, and the local
variable used. Finally, the last MustAlias rule makes the MustAlias relation symmetrically
and transitively closed.

Reachable(meth,␣All)␣←␣RootMethod(meth).␣

MustAlias(i,␣ctx,␣AP(from),␣AP(to))␣←␣
␣␣␣␣Move(i,␣to,␣from),␣
␣␣␣␣InMethod(i,␣meth),␣Reachable(meth,␣ctx).␣

MustAlias(i,␣ctx,␣ap,␣AP(to))␣←␣
␣␣␣␣(∀␣from:␣Phi(i,␣to,␣...,␣from,␣...)␣→␣MustAlias(i,␣ctx,␣AP(from),␣ap)),␣
␣␣␣␣InMethod(i,␣meth),␣Reachable(meth,␣ctx).␣

MustAlias(i,␣ctx,␣AP(to),␣AP(base.fld))␣←␣
␣␣␣␣Load(i,␣to,␣base,␣fld),␣
␣␣␣␣InMethod(i,␣meth),␣Reachable(meth,␣ctx).␣

MustAlias(i,␣ctx,␣AP(from),␣AP(base.fld))␣←␣
␣␣␣␣Store(i,␣base,␣fld,␣from),␣
␣␣␣␣InMethod(i,␣meth),␣Reachable(meth,␣ctx).␣

MustAlias(i,␣ctx,␣_,␣_)␣←␣MustAlias*(i,␣ctx,␣_,␣_).
Figure 5.5: The core, base Datalog rules for a model must-alias analysis.

Inter-Procedural Propagation Rules. Figure 5.6 presents four rules responsible for the
inter-procedural propagation of access path aliasing.
The first rule continues the handling of program instructions with a treatment of Call. At a
Call instruction, for method signature sig over receiver base, if base has a unique (resolved)
type, then the method is looked up in that type, a MustCallGraphEdge is inferred from the
invocation instruction to the target method and the method is also marked as Reachable
with a callee context computed using constructor NewContext. Recall that the NewContext
function may fail to return a new context (e.g., because ctx has already reached the maximum
depth and calleeCtx would exceed it) in which case the rule will not infer new facts.
The other three rules handle aliasing induced at a method invocation site. Despite their
rather daunting form, the rules are quite straightforward. The first states that, at the first
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instruction of a called method, the formal and actual arguments are aliased. In combina-
tion with other rules (discussed next, under “Access Path Extension”) this is sufficient for
transferring all alias pairs from the caller to the callee. The actual argument is “primed”
appropriately, to mark that it is received from a caller. For instance, if the analyzed program
contains a call “foo(x)” to a method defined as “void foo(Object y)”, the rule will simply
infer that x’ and y are aliased. The rule infers the same aliasing for the base variable of the
method call and the pseudo-variable this inside the receiver method. (Note how the first
instruction of the called method is computed as the only instruction in the method that has
no CFG predecessors: ∀ k → !Next(k, firstInstr). This convention is assumed to hold
for our input intermediate language.)
The third rule similarly identifies the first instruction of a called method. It then propagates
to it all alias pairs that hold after all predecessor instructions, j, of the calling instruction,
i. The base variables of the alias pairs are “primed”, as appropriate, to denote that they
come from the caller.
The fourth and final rule performs the inverse mapping of access paths from a return instruc-
tion to the call site. For alias pairs to propagate back (to the caller, with context callerCtx),
they need to hold either in the appropriate context (calleeCtx, which matches callerCtx
in the call graph), or unconditionally, i.e., with context All. Access paths are “unprimed”
when propagating to the caller. Note that this implies that local alias pairs (e.g., among
local variables of the callee) do not propagate to the caller.
Crucially, the handling of a method return is the only point where a context can become
stronger. MustAlias facts that were inferred to hold under the more specific calleeCtx are
now established, modulo unpriming, under callerCtx.

Access Path Extension. Figure 5.7 contains a straightforward, yet essential, rule. This
rule allows access path extension: if two access paths alias, extending them by the same field
suffix also produces aliases. It is important to note that the constructor AP is not used in
the head of the rule, thus the extended access paths are not generated but assumed to exist.
Therefore, the rule does not spur infinite creation of access paths.
This powerful rule is responsible for much of the simplicity of our must-alias analysis specifi-
cation. For instance, recall how earlier we handled the mapping of actual to formal method
arguments quite simply: we merely added an alias between the (primed) actual argument
variable and the formal argument. It is the access path extension rule that takes care of also
generalizing this mapping to longer access paths whose base variable is the actual argument
of the call.

Frame Rules: From One Instruction To The Next. The rule in Figure 5.8 determines
how must-alias facts can propagate from one instruction to its successors. The rule simply
states that all aliases are propagated if the instruction is not a store or a call. (Because of
SSA, access paths cannot be invalidated via move instructions.)

Comments. The model we just presented is carefully designed to encompass a minimal,
highly-compact but usefully representative must-alias analysis. There are several extensions
that can apply, but all of them are analogous to features shown. For instance, we are missing
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MustCallGraphEdge(i,␣callerCtx,␣toMeth,␣?calleeCtx),␣
Reachable(?calleeCtx,␣toMeth)␣←␣
␣␣␣␣Call(i,␣base,␣sig),␣
␣␣␣␣InMethod(i,␣inMeth),␣Reachable(inMeth,␣callerctx),␣
␣␣␣␣Resolved(base,␣type),␣LookUp(type,␣sig,␣toMeth),␣
␣␣␣␣NewContext(i,␣ctx) = ?calleeCtx.␣

MustAlias(firstInstr,␣calleeCtx,␣?ap1,␣?ap2)␣←␣
␣␣␣␣MustCallGraphEdge(i,␣_,␣toMeth,␣calleeCtx),␣
␣␣␣␣InMethod(firstInstr,␣toMeth),␣(∀␣k␣←␣!Next(k,␣firstInstr)),␣
␣␣␣␣((FormalArg(toMeth,␣n,␣toVar),␣ActualArg(i,␣n,␣fromVar))␣;␣
␣␣␣␣␣(ThisVar(toMeth,␣toVar),␣Call(i,␣fromVar,␣_))),␣
␣␣␣␣PrimeAP(AP(fromVar)) = ?ap1,␣AP(toVar) = ?ap2.␣

MustAlias(firstInstr,␣calleeCtx,␣?ap1,␣?ap2)␣←␣
␣␣␣␣MustCallGraphEdge(i,␣callerCtx,␣toMeth,␣calleeCtx),␣
␣␣␣␣InMethod(firstInstr,␣toMeth),␣(∀␣k␣←␣!Next(k,␣firstInstr)),␣
␣␣␣␣(∀␣j:␣Next(j,␣i)␣→␣MustAlias(j,␣callerCtx,␣callerAp1,␣callerAp2)),␣
␣␣␣␣PrimeAP(callerAp1) = ?ap1,␣PrimeAP(callerAp2) = ?ap2.␣

MustAlias(i,␣callerCtx,␣?ap1,␣?ap2)␣←␣
␣␣␣␣MustCallGraphEdge(_,␣callerCtx,␣toMeth,␣calleeCtx),␣
␣␣␣␣FormalRet(retInstr,␣toMeth,␣_),␣
␣␣␣␣(MustAlias(retInstr,␣calleeCtx,␣calleeAp1,␣calleeAp2)␣;␣
␣␣␣␣␣MustAlias(retInstr,␣All,␣calleeAp1,␣calleeAp2)),␣
␣␣␣␣UnprimeAP(calleeAp1) = ?ap1,␣UnprimeAP(calleeAp2) = ?ap2.

Figure 5.6: Datalog rules for inter-procedural propagation of alias pairs.

MustAlias(i,␣ctx,␣?ap3,␣?ap4)␣←␣
␣␣␣␣MustAlias(i,␣ctx,␣ap1,␣ap2),␣
␣␣␣␣AP(ap1.fld) = ?ap3,␣AP(ap2.fld) = ?ap4.

Figure 5.7: Datalog rule for access path extension.

MustAlias(i,␣ctx,␣ap1,␣ap2)␣←␣
␣␣␣␣!Store(i,␣_,␣_,␣_),␣!Call(i,␣_,␣_),␣
␣␣␣␣(∀␣j:␣Next(j,␣i)␣→␣MustAlias(j,␣ctx,␣ap1,␣ap2)).

Figure 5.8: Datalog frame rule propagating alias pairs from one instruction to the next.
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a rule for propagating back to the caller complex access paths (i.e., of length greater than
1) that are based on the formal return variable. Similarly, store or call instructions do not
invalidate aliasing between local variables—an extra rule could allow further propagation.
Furthermore, it is not always necessary for an alias pair to hold in all predecessors: it could
hold in one and others may be dominated by the instruction and not invalidate the alias
pair. Our actual implementation contains the handling of such cases, but these complexities
do not affect the discussion of our model.
These rules liberally employ negation. They establish that must-alias facts are propagated if
some disabling conditions do not hold. Therefore, for a full-fledged analysis, the rules need
to be enriched with more preconditions, to cover all different kinds of program instructions
that may invalidate access paths.

5.3 Discussion

There are several parts of the model and its implementation that are worth emphasizing.

Access Path Creation. Our access path constructor, AP, hides the details of the space of
access paths and their construction. There are several different policies that an analysis can
pick. In theory, we could up-front populate the entire combinatorial space of “var(.fld)*”)
up to a certain depth. However, the large sizes of the domains of variables and fields
make this prohibitive. An efficient way to create access paths lazily (also used in our full
implementation) is to initially generate all primitive access paths (variables and variable-
single-field combinations) that appear explicitly in the program text, and then close the set
of access paths by employing the rule:
AP(ap2.fld) = ?newAp␣←␣MustAlias(_,␣_,␣ap1,␣ap2),␣AP(ap1.fld) = _.

Note that one use of the constructor AP is in the head of the rule (thus generating new access
paths on the fly) and one in the body (checking that the access path already exists). That
is, extended access paths (base.field) are generated only if their base access path is found
to be aliased with another path, which already exists with the field suffix.

Context Sensitivity in Must-Alias. The use of context in our must-alias analysis is
subtle. Context in a pointer analysis is used to distinguish different dynamic execution flows
when analyzing a method. That is, the same method gets analyzed once per each applicable
context, under different information. The context effectively encodes different scenarios
under which the method gets called, allowing more faithful analysis in the specialized setting
of the context.
Yet, the use of context in a must-alias analysis has been explored very little in the past.
The reason is that there is little benefit to be gained from specializing incoming information
(i.e., alias pairs) for a must-alias analysis. Pairs of aliasing access paths already offer a
symbolic summary of a function’s behavior, so that there is less need to analyze the function
separately for different contexts: the access paths can be merely returned to the caller and
they will be specialized there. Our analysis model employs context to transmit alias pairs
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from a caller to a callee, yet qualify them with the context identifier to which they pertain.
This enables producing more alias pairs, however, their validity is conditional on the context
used.
Still, this conditional information can be used for further inferences. For instance, MustAlias
inferences could be combined with allocation instructions (allocation sites can be viewed as
global access paths) in order to determine, when possible, which objects an access path
must point to. In turn, this can inform virtual method resolution, which our current rules
(Figure 5.6) only perform via a may-analysis by use of relation Resolved. In this way,
specialized alias relations for a given context can result in more inferences (since a method
call may now have a known target). These inferences can be propagated back to the caller,
where they hold unconditionally. (Recall that the rules handling returns can remove access
path assumptions.)
Generally, the use of a deeper context in a must-analysis can extend its reach (or recall
as discussed in Section 2.8), allowing more inferences, i.e., a larger result, whereas deeper
context in a may-analysis it results in more precision, i.e., a smaller result.
What can our context be, however? In previous chapters, or typical context-sensitive pointer
analyses in the literature, a variety of context creation functions can be employed. There
are context flavors such as call-site sensitivity [137, 140], object sensitivity [105, 106], or
type sensitivity [142]. Our NewContext constructor (employed at method calls) could be
set appropriately to produce such context variety. However, the current form of our rules
restricts our options to call-site sensitivity, with potential extra information adding to, but
not replacing, call sites. Given the signature of constructor NewContext the assumption is
that the new context produced uniquely identifies both invocation site invo and its context,
ctx. Effectively, if NewContext produces a ?newCtx at all, it can do little other than push
invo onto ctx and return the result.
The analysis then propagates MustAlias pairs from (all predecessors of) call site invo under
context ctx to the first instruction of a called method, toMeth, under context ?newCtx. Thus,
?newCtx should be enough to establish that these inferences must hold. There is no room
for conflating information from multiple execution paths (i.e., callers and calling contexts).3

The requirement that NewContext(invo, ctx) produce contexts that uniquely identify both
invo and ctx means that context can only grow from an original source in our analysis.
Consider a set of three methods, meth1, meth2, and meth3, each calling the next. If we
allow NewContext to produce contexts that are stacks of invocation sites, i, each starting
with All and growing up to depth 2, then starting from meth1 we will propagate its aliases
to meth2, which will propagate the resulting combined aliases to meth3. The propagation
will stop there, i.e., the aliases of meth1 cannot influence inferences for callees of meth3.
However, meth3 (assuming it is included in the root methods) will itself also be analyzed
with a context of All, allowing its own aliases (independently derived from those of meth1
or meth2) to be a source of a similar propagation.

3One could imagine doing so under the premise that all such calling contexts agree on the aliases they
establish at the beginning of the callee function. However, this is unlikely to arise often in practice.
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Representation of Equivalence Classes. Relation MustAlias encodes equivalence classes
on access paths. Datalog inherently has no such notion and any attempt to compute a must-
alias relation has to explicitly encode all aliasing pairs. E.g., if variable v1 is an alias for
variable v2, and v2 of variable v3, we have to explicitly record the following pairs: {v1 ∼
v2}, {v2 ∼ v1}, {v2 ∼ v3}, {v3 ∼ v2}, {v1 ∼ v3}, {v3 ∼ v1}. This effect is exacerbated
for longer access paths.
In theory, this redundancy will greatly hinder performance. In practice, it is often affordable
because of keeping access paths short and computing must-alias information where needed,
due to the locality of such information. (Aliasing pairs rarely propagate much deeper than
the point in code where they were first established.) The analysis is fully modular and
can be applied to any subset of the program code. Still, future work should address this
shortcoming in the general setting of Datalog computation of equivalence relations.

5.4 Summary

The literature on must-alias analyses is sparse and the distance of specification to imple-
mentation is typically large. In our literature survey we have not found a single must-alias
analysis publication that concretely refers to another and shows how its approach differs.
Thus, we believe that our declarative model can offer a reference point for future work.
We believe that our model is clear yet concrete enough to spur further development and a
better understanding of the comparative features of different must-alias analysis algorithms.
In practical terms, must-alias analysis is valuable and woefully under-exploited in the lit-
erature. Our experiments show concrete value for (human) program understanding and
(automatic) optimization.
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6. MUST-ALIAS ANALYSIS: DATA STRUCTURES

I love humans. Always seeing patterns
in things that aren’t there.

The 8th Doctor - Doctor Who

The previous chapter presented an elegant minimal model of a must-alias analysis in the
declarative setting of Datalog (and the Doop framework). Although attractive in its ex-
pressiveness, if the model is to be implemented as is it will incur serious performance penal-
ties. As mentioned in the discussion Section 5.3, an important prerequisite for a must-alias
analysis is that of encoding equivalence classes on access paths. Datalog inherently offers
no feature to support such notion and thus, in the previous chapter, we had to resort to an
explicit representation of all alias pairs.
In this chapter, we present a data structure that can dramatically speed up the performance
of must-alias analysis. The insights behind the data structure are quite general. First, the
fact that must-alias sets are equivalence classes and the need to avoid explicitly computing
each alias pair. In contrast, an optimized implementation will encode aliasing implicitly:
as membership in the same sub-structure. This is a technique also employed in past static
analysis approaches in different settings (e.g., in the use of union-find trees in Steensgaard-
style [153] points-to analysis). Additionally, aliasing can be implicitly extended to longer
access paths and this inference should be readily computable in the course of the analysis. For
instance, if two program expressions x and y.next are aliases, then so are all their extensions
(e.g., x.prev and y.next.prev). Such “derivative” relationships should be represented
compactly. In our data structure, we represent complex program expressions implicitly until
expansion is needed and up to the extent that must-alias information exists for them.
Our data structure is effectively a symbolic abstraction of the program’s heap—as a directed
graph. We invent for each variable a graph node: an abstract object that represents “the
object that the variable points to”. Although several abstractions of the heap have appeared
in the literature, ours is distinguished by several elements—e.g., a mere “load” operation
introduces a new abstract object. An abstract object in our structure represents at most one
concrete object, unlike traditional abstractions that map multiple concrete objects to one
abstract. Whenever a must-alias inference is made, the corresponding abstract objects are
merged: the two abstract objects have to correspond to the same concrete one. Access paths
are represented implicitly, as regular paths that follow object fields through our symbolic
heap. All operations over the graph arising during a must-alias analysis (especially the
intersection of graphs) are performed highly efficiently.
We implement the data structure in two settings: imperatively, in Java, with destructive
updates (upon aliasing, abstract objects are collapsed together) and purely functionally
(upon aliasing, abstract objects are related in an associative structure). The latter is suitable
for a declarative implementation, in the Datalog language. We show that the data structure
yields large performance improvements compared to an explicit representation of alias pairs.
The imperative version achieves a speedup of up to two orders of magnitude, with the
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declarative implementation nearly matching it in most cases. As a result, the running time
of a realistic must-alias analysis becomes small—a few tens of seconds for large benchmarks
and the full Java library.
Overall, in this chapter we:

• Describe the primitive operations (e.g., set intersection) that a must-alias analysis
needs to perform.

• Present an efficient data structure for representing must-alias analysis inferences and
efficiently encode operations over that structure.

• Apply the new data structure on an must-alias analysis implemented in an existing
framework and quantify the benefits in different implementation settings.

6.1 Must-Alias Analysis Needs

Before presenting our optimized data structure for a must-alias analysis, it is important
to ponder upon the properties of such an analysis and the algorithmic needs that arise if
one is to implement it with performance in mind. The previous section offered a minimal
yet representative Datalog model of a must-alias analysis. A great benefit of a distilled
declarative model is the ability to reason about its properties. Directly executing the Datalog
rules of Section 5.1 is a realistic proposition. Indeed, the must-alias analysis in the Doop
framework is well-captured by the model. However, several inefficiencies arise from the rules.
We next examine the model and discuss how it leads to an optimized data structure, and its
associated algorithms, for must-alias analysis.

Representing Equivalence Relations. We have already commented on the effects of
a naive implementation of the must-alias relation in previous sections. For instance, four
program expressions aliasing with each other would require the explicit representation of
twelve alias pairs (ignoring the trivial pairs of each expression aliasing with itself) in order
for the relation to stay reflexive, symmetric and transitively closed.
Since must-alias is an equivalence relation, it induces a partitioning of the space of access
paths: every access path can only belong in one alias (equivalence) class. This means that
we can represent the contents of each class compactly, by grouping together all aliased access
paths. An access path can denote that it belongs in a certain alias class, e.g., by having a
unique identifier, or by being a member in a linked data structure. The goal is to represent
an alias class using linear space and time (in the number of its access paths) instead of
enumerating all pairs of aliased access paths (and taking up quadratic space and time).
It is important to note that the concrete (i.e., dynamic) “alias” relation is also an equivalence
relation, but most may-alias relations in the static analysis literature are not. For instance,
in a typical subset-based pointer analysis, access path ap1 may-alias ap2 by pointing to the
same abstract object (among others). Similarly, ap2 may-alias ap3. However, it may not
be the case that ap1 and ap3 may-alias: the common elements in the points-to sets of ap1
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and ap2 may not be among the common elements in the points-to sets of ap2 and ap3. This
highly influences all data structure operations. Notably, the main algorithm that we will
describe (intersection of data structures when joining control-flow paths) is not present in a
may analysis.

Extending Access Paths. A less obvious observation concerns the representation of alias-
ing in extended access paths. A naive implementation would, once again, have to represent
aliases explicitly. For instance, two aliased program variables x and y will also induce alias
pairs x.f and y.f, as well as x.g and y.g, x.f.g and y.f.g, etc., up to the maximum
access path length (and modulo valid field accesses). This is an exponential number, Ω(ck),
of aliased access paths, for c valid fields and access path length limit of k. The access path
length can be easily limited (e.g., k = 3 does not restrict the vast majority of useful alias
inferences), so the burden is not insurmountable, but it can still be significant.
Ideally, we would like a data structure that only explicitly maintains the initial aliasing
relationship and can implicitly derive the aliasing of all extended access paths.

Algorithms. Once we have a data structure that satisfies the above requirements, what
algorithms should we implement efficiently on this data structure? The basic algorithms
behind most must-alias analysis inferences are straightforward. The analysis needs to copy
alias classes (equivalence classes), add a single access path, remove a single access path, or
rename variables in a set of alias classes. The only case that introduces some complexity is
the one dealing with multiple predecessors of an instruction in the control-flow graph.
In a must-alias analysis setting, in order for an alias pair to be valid at the instruction
where multiple control-flow paths meet, it should hold in each path. The operation we need
here is that of taking the intersection of alias classes from many different sets (one for each
predecessor instruction). For instance, in the code snippet of Figure 6.1, on line 19, we can
infer that {a2.member ∼ b1} since it holds in both paths, but not that {a2.next ∼ a1}.

1 class A {
2 A next;
3 B member;
4 A(A next, B member) {
5 this.next = next;
6 this.member = member; } }
7 class B {
8 A container;
9 B(A container) {

10 this.container = container; } }

11 void main(String[] args) {
12 B b1 = new B(null);
13 A a1 = new A(null, b1);
14 A a2;
15 if (args != null)
16 a2 = new A(null, b1);
17 else
18 a2 = new A(a1, b1);
19 b1.container = a2;
20 }

Figure 6.1: Code snippet to illustrate certain points of our algorithms.

More than a Union-Find. Before describing our data structure in full detail, it is im-
portant to note how it differs from an implementation of the well known Union-Find data
structure. First, it extends on the idea of keeping sets of equivalent elements, by connecting
equivalence classes in order to form complex access paths in a compact way. Secondly, it
allows for deletions of elements from an equivalence class, potentially producing sets without
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elements (but significantly different to an empty set—as explained later). Thirdly, and more
importantly, our data structure introduces an additional operation on equivalence classes—
that of intersection—in supplement to that of union.
Notably, in contrast to a typical data structure for equivalence classes, unions of (non-
singleton) equivalence classes do not arise: if an expression is newly aliased with others, it
is because it is no longer aliased with its previous aliases. The corresponding operation is a
single access path addition and removal (from a different class). Conversely, intersections of
alias classes are central to our structure.

6.2 An Optimized Data Structure and Algorithms

Based on the above requirements, we propose an alias graph data structure (and associated
algorithms) for representing all alias sets of access paths that hold at a certain program point.
In a typical must-alias analysis, a program point is a possibly context-qualified instruction.
Each such instruction-and-context combination maintains an alias graph and the analysis
updates it until fixpoint. An updated alias graph depends on the earlier graph for the same
program point, on the graphs of its predecessor instructions, and on the current instruction’s
semantics.
We begin with a description of the easier case: how the current instruction affects the alias
graph. This will also help illustrate the data structure.
The intuition is that an alias graph abstractly represents local variables and the heap, with
abstract objects as placeholders for concrete objects. Nodes (abstract objects) are alias
classes, edges are field-points-to relationships. Every abstract object, however, corresponds
to (at most) a single concrete object at the current program point: our data structure is
isomorphic with a part of the concrete heap. This property is true only because the data
structure represents definite (must) aliasing.
We illustrate with simple examples. It is worth noting once again that every program in-
struction will maintain a different alias graph. The following examples focus on the situation
at a certain instruction.
All variables conceptually begin with their own node in the graph. (In practice, such nodes
need not be represented, unless connected to others.) The node represents “the object that
the variable points to at this program point”.

x zy

Aliasing can be induced by various program operations (e.g., Move, Load, and Store), as seen
in our earlier model. Since we are interested in must-alias, two aliased variables have to point
to the same object—their nodes can be merged if a Move instruction, x = y, is encountered:
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x,y z

This collapsing of nodes is responsible for compact encoding of equivalence relations: two
variables are computed to be aliases iff1 they belong in the same node of the alias graph.
If the next instruction is a Store, x.f = z, the previous graph will get propagated—i.e.,
copied. Subsequently, the Store will add an edge to the graph, signifying that the field, f,
of the object pointed by x will point to the object that z points to:

x,y z
f

A subsequent Load operation, z = y.g,2 will inherit the alias graph of its predecessor and
will modify it. Variable z is removed from its old node (z no longer points to this abstract
object), a new node for z is created, and the nodes are linked, to indicate that z now points
to the same object as y.g. The empty, former node of z will be garbage collected if no other
paths can reach it in the alias graph.
On the other hand, when an access path can still reach the empty node, the empty node
provides useful information. It represents “the object that an access path points to at this
program point”. Empty here doesn’t describe the lack of information—just the lack of a local
variable pointing to this abstract object.

x,y

z

f

g

The Load operation shows that our alias graph, although intended to abstractly represent a
real heap, behaves quite differently: a load from a field can introduce new objects, as well
as update fields of existing objects.
Generally, the alias graph captures compactly all aliasing relationships among access paths.
Maintaining the graph across program instructions is simple, as in the above examples.

1The statement refers to the must-alias analysis results, not to actual aliasing during program execution.
2The example sequence of actions described is contracted for brevity. Our implementation works on a

static single assignment (SSA) intermediate form, so this exact scenario will never arise, since z has had its
value read earlier and its single assignment has to dominate its use.
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Graph manipulation merely has to observe some invariants:

• Two variables are in the same graph node iff the analysis reports them to be aliased.
(Since alias classes are disjoint, the variables in different nodes are also disjoint.)

• A path in the graph represents a set of access paths, starting from a non-empty node
(that denotes the base variables of the access paths) and extended with the field labels
along the path’s edges. If two paths in the graph reach the same node, all access paths
they represent must be aliased.

For illustration, consider Figure 6.2, which shows the alias graph after line 19 of our code
example in Figure 6.1.

b1 a1

a2

container

member

member

Figure 6.2: Example alias graph data structure.

The graph concisely represents a set of alias relationships that hold at that program point:
{b1.container ∼ a2}, {a1.member ∼ b1}, and {a2.member ∼ b1}. An infinite number of
other alias pairs are represented implicitly: {a1.member∼ a2.member}, {a1.member.container
∼ a2}, {a1.member.container.member∼ b1}, {a1.member.container.member∼ a1.member},
etc.
Overall, the alias graph satisfies both of our requirements of Section 6.1 for an efficient rep-
resentation. Equivalence relations are represented compactly: an alias class with n members
does not need O(n2) space and time for its computation. Instead, it is represented implic-
itly, as all the variables in a node (O(n) space) and all alias graph paths that can reach a
node. Similarly, long (and even infinite) access paths are represented implicitly as graph
paths. The implicit representation is sufficient for any specific queries (i.e., “are two given
program expressions aliases?”) and for subsequent aliasing computations, per the algorithms
we detail next.
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6.2.1 Main Algorithms

Most of the required must-alias analysis actions (per the discussion of Section 6.1) over our
data structure are straightforward, consisting of copying, additions and removals of variables
and edges, and variable renamings. Standard mappings for efficient indexing are required:
each target of a directed edge needs to be able to quickly retrieve its source, and each program
variable needs to quickly map to the node in which it appears.
For instance, according to the earlier definition of the data structure, finding all aliases of
an access path is simple (but requires a transitive computation—our graph is a condensed
representation of alias classes):

Algorithm: all-aliases(ap)

• Find the node for the base variable of access path ap, traverse in the forward direction
the labeled edges that match each of the fields of ap to reach a target node.

• Any graph path that reaches the same node corresponds to an aliased access path,
from a base variable adding the fields labeling the edges. (I.e., traverse k − 1 directed
edges backwards to find access paths of length up to k.)

For instance, in Figure 6.2, we can find all aliases of length 3 of access path a2.member by
traversing edge member from node a2 (thus reaching the node containing b1) and finding all
paths of length 2 that can reach the same node, also including the variable(s) in the starting
node of the path (e.g., b1.container.member).
The more interesting algorithm, as suggested earlier, is that of intersecting alias graphs—
necessary for merging alias information from predecessor instructions. This is easy to see
as a repeated intersection of two graphs (which is then iterated by intersecting a third with
the result, then a fourth, and so on). Note that the graphs do not need to contain a single
connected component.

Algorithm: intersect(g1, g2)

• The domain of possible nodes for the result of the intersection is the cartesian product
of nodes of g1 and g2. For every two nodes i, j of g1 and g2, respectively, node (i, j),
if it exists in the intersection result, will contain the intersection of the variables of i
and j.

• Nodes are materialized incrementally, according to the rules below.

1. For every two nodes i, j of g1 and g2, if the intersection of the variables of i and
j is non-empty, add to the intersection result a new node (i, j).

2. (Repeatedly) If node (i, j) exists in the intersection result, then for every label f ,
if g1 has an edge i→ k with label f , and g2 has an edge j → l, also with label f ,
then add to the intersection result (if not already present):
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- a node (k, l) (possibly empty);
- an edge (i, j)→ (k, l) with label f .

Note that the first step is of linear complexity in the number of nodes, since empty nodes can
be eagerly skipped and indexing from a variable to the, up to one, node that may contain it
in a different graph is constant-time.
The algorithm considers all possible pair-wise node combinations and all possible edges out of
node intersections. It maintains the property that any aliasing relationship (either variables
belonging in the same node, or paths reaching the same node) in the result also exists in
both input alias graphs.
Notably, the intersection of two alias graphs can produce nodes with empty variable sets,
due to the second step of the algorithm. Empty nodes with no in-edges can be eliminated
eagerly. Empty nodes with in-edges are meaningful in the output and need to be maintained.
To illustrate, consider the example in Figure 6.3.

x,u z

f g

y

x,w z

f g

v

x z

f g

Figure 6.3: Intersecting alias graphs.

In this case, the empty note denotes that access paths x.f and z.g are still aliased in the
intersection alias graph, even though they are no longer aliased with any single-variable
access path.
For upper bounds n, v, e in the number of nodes, variables, and edges in the input alias
graphs, respectively, the algorithm has a running time asymptotic bound of O(n + v + e),
i.e., linear in all quantities, if one assumes a practically constant-time indexing scheme from
a variable to its node. (Proof sketch: Non-empty nodes are fewer than variables and only
linear cost is incurred when combining non-empty nodes pair-wise, since each node has a
distinct set of variables, used to index into any node that may intersect that set in the other
alias graph. Empty nodes arise in the result and are only examined in the input if there is
an edge into or out of them, therefore their number is below e. The number of edges in the
output is at most that in the input—taken as the union of both input graphs).
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Empty nodes with no in-edges are only one instance of nodes that no longer encode use-
ful access path aliasing. Such nodes should be garbage-collected for maximum efficiency,
producing a normalized input. The node collection algorithm is as follows:

Algorithm: gc(g)

• Any node in g containing a single variable and with no incoming or outgoing edges is
eliminated.

• Any node in g containing no variables and with either zero in-edges or one in-edge and
zero out-edges is eliminated.

In all cases covered by the above algorithm, the node does not encode alias pairs that would
disappear with the node’s removal: either there are no two paths (or variable names) that
reach the node, or the node does not extend other paths beyond the implicit extension with
the same field names that is already captured by the data structure.

6.2.2 Use in Practice

Having described the individual steps of an analysis using a must-alias data structure, we turn
our attention to how it is used in the context of a realistic analysis. Consider the must-alias
analysis of the Doop framework, discussed in Chapter 5. This computes a MustAlias(i,
ctx, ap1, ap2) relation, i.e., aliased access paths at each program point and calling con-
text. That is, each instruction-and-context combination is associated with an alias graph.
Initially, conceptually every possible variable has its own node. (Implementation-wise, this
is represented as an empty graph, requiring no initialization.) Every program instruction is
visited and its alias graph is updated based on the instruction semantics and the operations
that we described earlier. Specifically, every variable-aliasing instruction merges nodes (cre-
ating them if they only existed implicitly, i.e., they were single-variable nodes), every load
and store instruction creates nodes and/or edges, every instruction also integrates the alias
graphs of its predecessors, intersecting them if the instruction is a control-flow merge point.
The visit order is not important for correctness, though it might affect performance (i.e., the
number of steps needed before convergence is achieved).
At a call instruction, the analysis creates a new instruction-and-context pair (unless it exists
already) for the first instruction of the callee method and the given context. Maximum
context depth is a parameter of the analysis and if reached the call instruction will not
be further analyzed. This is a sound approach for a must-alias analysis, since the aim is
to compute an under-approximation of the alias relationships that are guaranteed to hold.
With our data structure, the alias graph at the call site is copied to the first instruction in
the callee method and then the usual operations are applied.
The above are repeated until a fixpoint is met. At any given alias graph, the number of
non-empty nodes is bounded by the number of local variables in the program text. Empty
nodes can arise but gc ensures that the intersection operation, where merging of states takes
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place, can never produce more modes than the union of its inputs graphs: if an empty node
is kept, it is because an incident edge existed in the input, hence a corresponding node
appeared in the input.

6.2.3 Declarative Implementation

As discussed earlier, the alias graph data structure can be employed in a must-alias analysis
by maintaining alias graphs per-program-point (i.e., per context-qualified instruction), and
updating them (to incorporate information from their predecessor instructions) until fixpoint.
The data structure description we have seen so far considers this update to be a destructive
operation. For instance, after a Move instruction, we saw the nodes of two variables getting
merged. Similar merging can be induced by information that the analysis discovers while
it is executing (i.e., not directly induced by the semantics of the current instruction)—e.g.,
propagated from predecessors.
We have also designed and implemented a declarative/purely functional version of the data
structure. The main reason for the declarative implementation has been fairness in experi-
mental comparisons. We will compare our optimized implementation against the must-alias
analysis of the Doop framework, implemented in Datalog. Thus, it is desirable to also
implement a, perhaps not as optimal, declarative version of the data structure in Datalog.
This will allow us to isolate the effect of destructive updates from the inherent properties of
the data structure.
In the declarative version of the structure, aliased abstract objects are not merged, but
instead associated with each other. Schematically, we can consider that each variable has its
own node and points to at least one abstract object—at first the abstract object signifying
“whichever object the variable got assigned to” (at its single-assignment site):

x

x

(For the declarative implementation, we will represent abstract objects as squares, to avoid
confusion.)
Since we no longer have destructive updates, variables can point to multiple abstract objects.
For instance, after a Move instruction, x = y, we have:
As before, however, a variable can really point to a single concrete object. Therefore, the
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x

x

y

y

two abstract objects that x points to have to be different abstractions of the same concrete
object—their equivalence is encoded, but implicitly. It is easy to check that variables x and
y are aliased, in the usual sense: they both point to the same abstract object.
If the next operation is another Move, z = x, variable z is made to point to both abstract
objects that x points to:

x

x

y

y

z

z

Thus, the declarative data structure is less efficient than its imperative counterpart: a
quadratic representation of an alias set cannot be precluded, and depends on the order
of alias-inducing instructions. In our example, we could then assign z, the variable with
the most out-edges, to a new variable, w, then assign w (which now has the most out-edges)
to a new variable, and so on. In practice we expect that this effect will be mitigated. If
the next instruction assigns y to a new variable, u, then u receives only a single extra edge,
maintaining a more compact representation of the alias set. The cost, much as in the im-
perative structure, is that the alias set is not fully explicit and requires a transitive closure
computation to be materialized.

6.3 Evaluation

We implemented an analysis that functionally matches the one present in the Doop frame-
work that is implemented in Datalog (whose core ideas are aptly captured in the model
of the previous chapter). In contrast, our implementation is in Java, since our optimized
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alias graph data structure has imperative features in its full form. Finally, to also elim-
inate language-level factors of the Datalog-vs-Java implementations, we also produced an
optimized Datalog implementation, based on our purely functional data structure.
The three implementations are functionally equivalent, with very minor variations, due to
clear engineering differences: The original Datalog analysis has to bound the access path
length for aliases to a finite number, while the optimized data structure implicitly stores
aliases for longer access paths. This may allow inferring more aliases even for shorter access
paths. Also, for engineering simplicity, the Java implementation incorporates just a naive
fixpoint computation. In each fixpoint iteration, it keeps track of a set of instructions
whose alias graphs might be affected by the current changes, and those are the instructions
that will be inspected in the next iteration. This process is repeated until there are no
further instructions for consideration. The fixpoint computation is only crudely tuned for
performance and the algorithm is eager to mark an instruction as a candidate for the next
iteration.
Since the analyses are virtually equivalent, we next compare them only on speed. (For
context, however: the analysis is quite effective and computes far from trivial results. It
produces enough must-alias inferences to determine unique points-to targets for 20-40% of
local variables in all benchmarks. Its current main uses inside Doop are to enable strong
updates in a may-point-to analysis, as well as to produce results for inspection by humans,
to aid program comprehension.)
We use a 64-bit machine with an Intel(R) Xeon(R) E5-2687W v4 (24-cores) CPU at 3.00GHz.
The machine has 512GB of RAM. All measurements are single-threaded (though, as is com-
mon, Java runs its garbage collector in extra threads) and all executions occupy only a small
fraction of the available RAM. We experiment with the DaCapo benchmark programs [11]
v.2006-10-MR2 and v.9.12-bach under JDK 1.7.0_45. We use the LogicBlox Datalog engine,
v.3.10.14.

Speed across benchmarks. Figure 6.4 shows the performance effect of our optimized data
structure on analyzing the benchmark programs. We bounded the access path length (for
the original Datalog analysis) to 3 and the analysis context depth to 2.
Note that the figure is log-scale. Across all benchmarks, the difference between the optimized
implementations and the original is typically at least an order of magnitude and often close
to two. The speedup of the two optimized implementations (vs. the original) is also shown
more explicitly in Figure 6.5: over half the benchmarks enjoy speedups of over 20x for both
the Java and the Datalog optimized implementation. The Java version of the data structure
achieves a median speedup of 25.7x (min 8.4x, max 68.9x), while the Datalog version has
a median speedup of 24.6x (min 5.4x, max 47.3x). The analysis time typically drops from
over ten minutes to under half a minute.
It is not hard to see why the explicit representation is not competitive. Figure 6.6 correlates
the number of aliased access-path pairs (computed by the original analysis) and execution
time. (This applies to context-qualified access paths, in the application and libraries alike,
as long as the library code is reachable from application code with the given context depth.)
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Figure 6.4: Execution time (in seconds) of the analysis. We only show the numbers for the
Java and Datalog naive versions, to avoid crowding the chart.

Figure 6.5: Speedups of employing the optimized data structure.
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This metric reflects the size (in tuples) of the corresponding relation in the Datalog database.
It clearly suggest that maintaining access path relationships explicitly can prove quite costly.

Figure 6.6: Number of pairs of (instruction-and-context qualified) access paths that must
alias vs. analysis time.

Furthermore, the setup explicitly downplays the benefits of our optimized data structure:
First, the “optimized” running time also includes import time and computing must-point-to
results for checking the equivalence of analyses. The latter is quite costly, since it requires
re-expanding the compactly-preserved access paths. The true computation times of the
optimized analysis are about one-third of the times listed in Figure 6.4. Second, the con-
figuration parameters (context depth of 1 and access paths of at most length 2) are very
modest, to present the explicit representation in the best possible (while still realistic) light.
Changing these parameters can incur dramatic slowdowns for the explicit representation, as
we examine next.

Varying access-path length. To further see the performance advantage of the optimized
representation of must-alias information, one can vary the maximum access path length
allowed for computations of the original, explicit (Datalog) implementation. Figure 6.7 shows
how running time varies for maximum access path lengths of 2, 3 (same as in Figure 6.4), 4
and 5. The numbers are for the xalan benchmark. The speedup readily grows to over 75x
for an allowed access path length of 5. The optimized Datalog implementation is shown as a
baseline although it should be (and is) largely unaffected by the change of maximum access
path length.

Varying context depth.
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Figure 6.7: Execution time when varying maximum access-path length. Optimized Datalog
running time given as a baseline.

Figure 6.8: Execution time when varying maximum context depth.
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Similar observations can be made by varying the context depth of the analysis. As seen in
Figure 6.8, although the running time of the optimized implementation grows slowly, the
running time of the explicit representation of alias relationships gets dramatically higher.
For a context depth of 4, the explicit representation did not terminate after one-and-a-half
hour.
Recall the two claimed benefits of the optimized representation: long access paths are rep-
resented implicitly, and equivalence classes are represented with linear space and time com-
plexity, instead of quadratic. It is the latter factor that comes into play when context
depth increases: alias sets grow in size, by exploiting inter-procedural inference (e.g., alias-
ing established at the caller and propagated through formal arguments) in addition to local
instructions.

6.4 Summary

We presented a data structure for the its optimized implementation of must-alias analysis
over access paths. In all, the optimized representation fulfills its promise of a much more
economical representation of must-alias (equivalence) relations. The algorithmic improve-
ments afforded by the specialized data structure yield a large performance advantage, often
approaching two orders of magnitude.
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7. DEFENSIVE POINTS-TO ANALYSIS

You don’t just give up. You don’t just
let things happen. You make a stand!

Rose Tyler - Doctor Who

Soundness is a coveted property of static analyses, to the extent that the term is often
colloquially used as a synonym for “correctness”. For a may-analysis, soundness means that
the analysis abstraction over-approximates all concrete executions. A sound value-flow or
points-to analysis is one that computes, per program point or per variable, value sets that
represent (at least) all values that could possibly arise at the respective point during any
possible execution.
Full soundness is hard to achieve in practice due to code that cannot be analyzed (e.g.,
dynamically generated/loaded code, binary/native code) or dynamic language features (e.g.,
reflection, eval, invokedynamic). We collectively refer to such features as opaque code. For
instance, the Java code below invokes an unknown method, identified by string methodName,
over an object, obj.

Method m = obj.getClass().getMethod(methodName);
m.invoke(obj);

String methodName could be a true run-time value—e.g., read from a file or external resource.
Object obj could itself be of a type not available during analysis—e.g., obj could be obtained
through the network and statically typed using a vague interface or root-of-hierarchy type.
Faced with such complications, all past analyses that claim soundness have done so under
a priori qualifications. Prominently, abstract-interpretation-based [29] approaches, such as
Astrée [35], have long emphasized soundness. The conceptual form of such a soundness
result is as follows:1

An Analysis of programs in language Lang is sound relative to language subset
Lang′ and executions set Exec′ iff:

∀ program P ∈ Lang: P ∈ Lang′ ∧ e ∈ Exec′ =⇒ e ∈ γ(Analysis(P ))
(where γ is the concretization function that maps abstractions in the output
domain of Analysis to concrete executions in a universe Exec, superset of Exec′).

The problem with this formulation of soundness is that, although it yields provable the-
orems, the a priori qualification excludes virtually all realistic programs. The Lang′ or
Exec′ of published proofs disqualify the vast majority of modern programs “in the wild”.
Language subset Lang′ will typically exclude all dynamic features (e.g., reflection) and/or

1This formulation is due to Xavier Rival of the Astrée project (e.g., [129]).
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executions subset Exec′ will disqualify all behaviors that are deemed too-dynamic (e.g., in-
voking dynamically-loaded code). Reflection alone disqualifies ∼80% of Java programs in
the 461-program corpus of the recent Landman et al. study [79].
The above issues have led several members of the static analysis community to proclaim that
“all published whole-program analyses are unsound” [94], i.e., their soundness guarantee does
not apply to realistic programs, and similarly that “[there is not] a single realistic whole-
program analysis tool [...] that does not purposely make unsound choices”. The problem
is, therefore, both theoretical and practical. Soundness theorems do not give guarantees for
realistic programs. Implementations of analyses in tools happily perpetuate the illusion: they
handle soundly the language features one can prove theorems about, while cutting corners
in the sound handling of all other features, in order to demonstrate greater scalability or
precision. For instance, in our earlier Java code fragment, even if the type of obj is known,
many implemented static analyses will not consider all its methods (which now form a
small finite set) as possible values of m, but will instead ignore the code altogether. This
phenomenon has led to the introduction of the term soundy [94] to characterize such analyses
(recall Section 2.9). Despite the derogatory tone, “soundy” analyses are the current good
case of static analyses! They are realistic analyses that handle all “normal” language features
soundly.
In this work, we propose defensive analysis: a static analysis architecture that addresses the
above soundness shortcomings. The basis of defensive analysis can be seen as a different
conceptual formulation of soundness.

An Analysis of program P in language Lang computes results, Analysis(P ),
together with soundness marker sets, Claim(P ). The Analysis is sound iff:

∀ program P ∈ Lang, execution e: e[Claim(P )] ∈ γ(Analysis(P ))[Claim(P )]
(where γ is as before, and e[Claim(p)] is the restriction of an execution e to
program points with soundness claims, and the definition is similarly lifted to
sets of executions).

In other words, the analysis imposes no (or very liberal) a priori restrictions to its soundness
claims, but instead computes the claimed domain of its soundness: the program parts for
which the analysis result is sound. The soundness theorem applies to all (or most) programs,
under all execution conditions—instead of eagerly disqualifying the vast majority of real-
world programs. The extent of soundness is now defined over program points and becomes
an experimentally measurable quantity: the size of Claim(P ) (which we term the coverage
of the analysis) can be measured to quantify for which percentage of a program’s points the
analysis is guaranteed to produce sound results.
The challenge of defensive analysis is, thus, to distinguish parts of the program that are
certain to not be affected by opaque code. Delineating “safe” from “unsafe” parts of the
program is an ambitious goal, since opaque code can do virtually anything: it can add
dynamically-generated subclasses with never-seen methods that get called (via dynamic dis-
patch or first-class functions) at unsuspecting program points; it can call any existing method
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or alter any field via reflection; it can interpose its own implementations at every place where
the program uses a reflective lookup; worst of all, it can wreak havoc on all parts of the heap
reachable from any reference that escapes into opaque code.
To achieve the goal of distinguishing “safe” inferences, defensive analysis has a different
logical form from past analyses. Instead of adding sophisticated handling of opaque code,
defensive analysis redefines the analysis logic for regular, common language features, to
defensively protect against the possibility that the analysis information potentially depends
on opaque code. In essence, a defensive analysis produces inferences only when these are
guaranteed to hold because of existing code and language features, and cannot possibly
be violated by other, unknown code. Although this seems like a straightforward mode of
operation, applying it to yield a realistic static analysis with useful coverage is a challenge.
We designed and implemented a defensive may-point-to (henceforth just “points-to”) anal-
ysis for Java. The analysis follows the above form, explicitly designating points-to sets
that are sound, i.e., that contain at least all the values that may ever arise in actual ex-
ecutions. Soundness guarantees carry over to the implementation: the soundness proof
explicitly models all other language features as <unknown> instructions and makes only
weak, semantically-justified assumptions (e.g., a type-safe heap) about them. Soundness
reasoning is defensive in that it establishes when the analysis can be certain to know the
full contents of a points-to set, no matter what opaque code can do (within the stated weak
assumptions).
In our effort to implement defensive analysis in a realistic package, we found laziness to be
an essential feature—the analysis cannot scale without it for real-world programs. Laziness
means that the analysis does not compute points-to sets unless it can also claim their sound-
ness. That is, program points outside of the Claim(P ) set do not get populated at any
point—they remain empty throughout the analysis. Consequently, all points-to sets with a
potentially unbounded number of objects (e.g., sets that depend on reflection or dynamic
loading) are represented as the empty set: the analysis never computes any contents for
them. An empty analysis result merely means “I don’t know”, which could signify that the
points-to set is affected by opaque code, or simply that the analysis cannot establish that it
is not affected by opaque code. Laziness yields high efficiency: the analysis can fall-back to
an empty set (i.e., implicitly unbounded) without performing any computation or occupying
space.
The defensive nature of the analysis combined with laziness result in a very simple spec-
ification. The analysis does not need to integrate complex escape or alias reasoning (i.e.,
“can this object ever escape into opaque code?”), but only best-effort logic (i.e., “here are
simple, safe cases, when the object cannot possibly be affected by opaque code”). Failure
to establish non-escaping merely means that the points-to set remains empty, to denote “I
don’t know” or “potentially unbounded”.
In terms of applications, soundness is a requirement for ambitious clients, such as automatic
optimization or semantics-preserving refactoring. Such clients are simply not feasible with
past approaches. In particular, inter-procedural automatic optimization has long been hin-
dered by the absence of sound points-to analysis information. Thus, our work has significant
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potential for wide practical application.
Concretely, in this chapter we describe the following:

• We offer a general static may-point-to analysis that yields sound results for realistic
programs in the presence of opaque code. (Arguably other approaches [61, 62, 80]
achieve soundness, but not for the full problem. Additionally, an analysis can be
nominally sound by rejecting wholesale any program that employs features that the
analysis does not handle. This is also not a solution. We compare more thoroughly in
Section 8.4 of related work.)

• The analysis is efficient, leveraging its lazy representation of points-to sets. As a
result, it can be made precise, beyond the limits of standard whole-program points-to
analyses—e.g., for a 5-call-site-sensitive and flow-sensitive analysis. The analysis is
also modular: it can be applied to any subset of the program, and will merely leave
more points-to sets empty if other parts are unknown.

• We show that the analysis, though quite defensive, yields useful coverage. In measure-
ments over large Java benchmarks, our analysis computes guaranteed over-approximate
points-to sets (Claim(P )) for 34-74% of the local variables of a conventional unsound
analysis. (This number is much higher than that of a conventional sound but intra-
procedural analysis.) Similar effectiveness is achieved for other metrics (e.g., number
of calls de-virtualized), again with actionable, guaranteed-sound outcomes.

• The work brings some clarity to the domain of static analysis of opaque code. The
approach allows, for the first time, to quantitatively weigh the benefits of sound inter-
procedural analysis against its costs.

7.1 Analysis Illustration

We next describe the setting of defensive analysis and illustrate its principles and behavior.

7.1.1 Soundness and Design Decisions

Defensive analysis is a may-point-to analysis based on access paths, i.e., expressions of the
form “var(.fld)*”). That is, the analysis computes the abstract objects (i.e., allocation sites
in the program text) that an access path may point to. The analysis is flow-sensitive, hence
we will be computing separate points-to information per program point. Both of these design
decisions are integral elements of the analysis, as we will justify in Section 7.1.2.
Soundness in this setting means that the analysis computes an over-approximation of any
points-to set—i.e., the analysis computes (abstractions of) all objects that may occur in
an actual execution. However, since not all allocation sites are statically known (due to
dynamically loaded code), such an over-approximation cannot be explicit: not all possible
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values in a points-to set can be listed. Thus, there needs to be a special value, >, to denote
“unknown”, i.e., that the analysis cannot bound the contents of a points-to set.
Defensive analysis takes the above observation one step further, by employing a lazy ap-
proach: it never populates a points-to set if it cannot guarantee that it is bounded. Thus,
an empty points-to set for an access path signifies that (as far as the analysis knows) the
access path can point to anything.2

In other words, an empty set can be thought to represent a bottom (⊥) value during the
analysis computation: it just marks a set as having no known values—yet. A set stops being
empty only when all the possible ways (in known or unknown code) to contribute values to it
have been examined and are found to have bounded contents. At the end of the analysis, all
sets that have remained empty signify that the analysis could not bound their contents, i.e.,
they do not belong in the set Claim(P ) of program points with soundness claims. Therefore
an empty set after termination of the analysis is conceptually equivalent to a top (>) value:
the set could contain anything. This is consistent with the defensive nature of the analysis:
not knowing all the values of a set is considered just as bad as knowing it can point to
anything.
With this representation choice, the analysis does not need to expend effort in order to be
sound. All points-to sets (for any valid access path, of any length) start off empty, i.e., if
the analysis were to stop at that point it would report them as having > values, meaning
“the set can contain anything”. This is a sound answer, and is only subsequently refined.
This lazy evaluation means that defensive analysis does not need to employ sophisticated
mechanisms to simply be sound. For instance, instead of a precise over-approximate escape
analysis, defensive analysis can use a simple analysis (including none at all) to compute
straightforward cases when an object is guaranteed to never escape into opaque code.

7.1.2 Background and Illustrating Design Decisions

We can see the rationale behind our design decisions through simple examples.

Baseline intra-procedural resoning. It is easy for an analysis to be sound locally, in
an intra-procedural setting. For instance, when a variable is freshly assigned with a newly
allocated object, we are guaranteed to soundly know its points-to set:

x = new A(); // abstract object a1, x points-to set is {a1}

We can also propagate such information transitively through local assignments, as long as no
opaque code can interfere. In the case of local variables, standard concurrency models (for
Java, C++, etc.) do not allow interference from other threads, hence points-to sets remain
sound, as long as the code itself does not call out to opaque code:

2We use an explicit abstract value for null, therefore a points-to set that only contains null is not empty.
This is standard in flow-sensitive analyses, anyway. (In flow-insensitive analyses, null is typically a member
of every points-to set, so it is profitable to not represent it, and hence have an empty set mean a null-only
reference. No such benefit would arise in our flow-sensitive setting.)
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x = new A(); // abstract object a1, x points-to set is {a1}
y = x; // y points-to set is {a1}
z = y; // z points-to set is {a1}

This approach is one often taken by traditional compilers (ahead-of-time or just-in-time alike)
in order to perform intra-procedural optimizations, such as those based on traditional data-
flow analysis. (Later, in our experimental evaluation, we compare against such a baseline
“intra-procedural sound” analysis.)
However, the challenge is to also reason soundly about inter-procedural behavior. This
includes reasoning about the heap (i.e., reading fields of objects) and about method calls
and returns, whose resolution may be dynamic. This will be the focus of the defensive
analysis specification.

Inter-procedural elements. The large potential for opaque code to affect inter-procedural
analysis results has prevented past analyses from being sound. For instance, consider a simple
heap load instruction:

x = y.fld;

Imagine that the analysis has (somehow) soundly computed all the objects that y may point
to. It may also know all the places in the code where field fld is assigned and what is
assigned to it. However, the analysis still cannot compute soundly the points-to set of x
unless it also knows that all objects referenced by y can never escape to opaque code. This
is hard to establish: not only do all sites of opaque code (reflection, unknown instructions,
potential dynamic code generation sites, and more) need to be marked, but the analysis needs
to know an over-approximation of which objects these sites can reach. This requires to have
pre-computed an over-approximate (i.e., sound) points-to analysis, which is the problem we
are trying to solve in the first place. Past work has dealt with this problem with unrealistic
assumptions. For instance, Sreedhar et al. [149] present a call-specialization analysis that
can handle dynamic class loading, but only if given the results of a sound may-point-to
analysis as input.
Instead, defensive analysis pessimistically computes that a points-to set is > (i.e., can contain
anything) unless it is certain that its contents are bounded. When can the analysis know
this, however? Such a guarantee of bounded contents typically comes from having precisely
tracked the contents of a variable or field all the way from its last assignment, and having
established that no other code could have interfered. For instance, let us expand our earlier
example:

y.fld = new A(); // abstract object a1, y.fld points-to set is {a1}
... // analyzable, non-interfering code
x = y.fld;

The analysis can now know that the points-to set of x is {a1}, i.e., the singleton containing
the allocation site for A objects on line 1. For this to be true, the analysis has to establish that
all code between the store instruction to y.fld and the subsequent load does not interfere
with the value of y.fld. For example, we can be certain of such non-interference if the
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code does not contain a store to field fld of any object, does not call any methods, and no
other thread can change the heap at that segment of the program. These are simple, local
conditions that the analysis may well be able to establish.
In practice, our defensive analysis will do a lot more: it will track method calls, up to a
maximum context depth, to ascertain when they can interfere with points-to sets. (If any
interference is detected, the points-to set propagated forward is empty.) For instance, in the
example code below, the analysis can know with certainty the points-to set of x on line 6,
whenever method foo is called from line 3 of the program fragment.

1 y.fld = new A(); // abstract object a1, y.fld points-to set is {a1}
2 z.otherFld = new B();
3 foo(y);
4

5 void foo(W w) {
6 x = w.fld; // x-for-call-site-3 points-to set is {a1}
7 }

Note the elements that contribute to such reasoning: The result holds soundly only when
foo is called from the specific call site. This result is established only by tracking the value
of y.fld (renamed to w.fld inside method foo) instruction-by-instruction all the way to
line 6. The heap store instruction on line 2 is guaranteed to not affect y.fld (regardless of
whether z and y alias or not), since Java guarantees object isolation and the reference is to
a different field. (More on language model assumptions in Section 7.1.3.)
The above example helps illustrate the design choices of defensive analysis: it is a flow-
sensitive, context-sensitive analysis because it needs to track all points-to information that is
guaranteed to hold, per-instruction, following closely all possible control-flow of the program,
even across calls. It is also an analysis computing points-to information on access paths
because this gives significantly more ability to reason about the heap locally. For instance,
in the above program fragment, we may not know which objects y may point to.3 However,
we do know that y.fld certainly points to abstract object a1 after line 1!

Laziness. Finally, consider the design choice of representing unbounded points-to sets as
empty, i.e., to lazily compute the contents of points-to sets only if they can be proven
to be finite. Defensive analysis requires laziness for scalability. (Experimentally, a non-
lazy analysis does not scale for any non-zero context depth, i.e., cannot be effective inter-
procedurally.)
Laziness means skipping an explicit representation of >, in favor of keeping points-to sets
empy (⊥ in the usual lattice of sets) as long as possible. (As mentioned earlier, at the end
of the analysis, all sets that stayed ⊥ become implicitly >.) This has the minor benefit of
avoiding storage of > values, since empty sets are represented without consuming memory.
More majorly, however, it enables the analysis to give a convenient meaning to any finite
points-to sets that arise. Instead of “this set currently has bounded contents, but may become

3In fact, even if we did know, these would be abstract objects. Static analysis would almost never be
able to establish soundly what their fld field points to, because this information needs to capture the fld
values of all concrete objects (not just the latest one) represented by the same abstract object.
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> during the course of the analysis”, a non-empty set of values implies “this set has bounded
contents and is guaranteed to always have bounded contents”. By making this distinction,
the analysis never wastes effort computing points-to sets with explicit (non->) contents only
to later discover that the points-to set is >. For an example of how much wasted effort can
be saved by being lazy, consider an example program involving a heap load and a virtual
call:

1 y.fld = new A(); // abstract object a1
2 while (...) {
3 x = y.fld;
4 x.foo(y);
5 }

An analysis may have computed all the abstract objects that y.fld may point to at line 3.
One of these computed objects may induce a different resolution of the call instruction (line
4), which can suddenly lead to the discovery that an object aliased with y.fld can enter
opaque code (while this was not true based on what the analysis had computed earlier). Since
the object referenced by y.fld can change in code that is not analyzed, the points-to set
of x at the load instruction will need to be augmented with the implicit over-approximation
special value, >. This means that all previously computed values for the points-to sets of x
and y.fld are subsumed by the single > value. Computing these values and all others that
depend on them constitutes wasted effort. To make matters worse, this is more likely to
happen for large points-to sets, i.e., the more work the analysis has performed on computing
an explicit points-to set, the larger (and less precise) the set will be, and the more likely it
is that the work will be wasted because the set will revert to >.
The design principle of “laziness in order to avoid wasted effort” is responsible for the scal-
ability of defensive analysis. As we show in our experiments, defensive analysis scales to be
flow-sensitive, 5-call-site sensitive over large Java benchmarks and the full JDK. In standard
past literature for all-program-points analyses, even a flow-insensitive, 2-call-site-sensitive
analysis has been infeasible over these benchmarks [144].4

The alternative to using empty sets to represent “anything” would be to use a special >
value. However, this would necessitate (non-monotonic) negative judgments of the form “if
the set does not include the value > then ...”. Instead, with the empty set representation, the
logic becomes monotonic—“if the set includes some value then ...”—allowing for its efficient
implementation with generic fixpoint machinery, such as a Datalog engine.

4It is worth emphasizing that, although defensive analysis is lazy, this is a very different form of laziness
than that of on-demand points-to analysis (e.g., [10, 148]). An on-demand analysis only computes points-to
information for program points that may affect a particular site of interest, instead of the entire program.
The defensive analysis we describe is an all-program-points analysis: it computes points-to information for
the entire program, i.e., for all possible points-to queries, including ones potentially devised in the future.
Yet the analysis is lazy in that it only computes values for points-to sets that it can prove to have bounded
contents.
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7.1.3 Soundness Assumptions

The soundness claims of defensive analysis are predicated on assumptions about the envi-
ronment. These assumptions reflect well the setting of safe languages, such as Java:

• Object isolation. Objects can only be accessed via high-level references. This means
that objects and fields are isolated: an object can be referenced outside the dynamic
scope of a method or by a different thread only if a reference to the object has escaped
the method or current thread. (This restriction also implies that objects are not
contained in one another, though they can contain references to each other.) A field
can only be accessed via a base object pointer and a unique field signature.

• Stack frame isolation. Local variables are isolated from each other, thread-private
and private to their allocating method. No external code can access the local variables
of a method, even if the code is executed (i.e., is a callee) under the dynamic scope of
the method.

• Concurrency model. In the simplified model of this chapter, soundness is predicated
on the assumption that standard mutexes (or operations on volatile variables) are
used to protect all shared memory data. We later discuss how our implementation
removes this assumption.The reason for the simplified concurrency model is that it
allows presenting the analysis in its purest form, dealing with core language features
such as heap loads/stores and calls, but unencumbered by auxiliary considerations
(e.g., computing objects that do not escape into other threads).

Thus, our setting is clearly that of a safe language with near-unlimited potential for dynamic
behavior. Notably, we can have unknown instructions; calls to native code with arbitrary
behavior (over a well-typed, isolated heap); generation and loading of unknown code (which
may also be called, via dynamic dispatch, by unsuspecting known code); arbitrary access
to existing or unknown objects (both field read/writes and method calls) via reflection, i.e.,
without such access being identifiable in the program text; and more.

7.2 Defensive Analysis, Informally

The discussion of analysis principles in the previous sections gives the main tenets of defensive
analysis. However, these need to be concretely applied over all complex language features
affecting points-to information: control-flow merging, heap manipulation, and method calls.
We give informal examples next. Following these examples should significantly facilitate
understanding the formal specification of the analysis, in later sections.

Control-flow merging. Consider a branching example:

1 if (complexCondition())
2 x = new A(); // abstract object a1, x points-to set is {a1}
3 else
4 x = notFullyAnalyzed(); // x points-to set is {}
5 // x points-to set is {}
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The first branch of the above if expression establishes that the points-to set of variable x
is {a1}. For a conventional analysis, this would result in adding a1 to the points-to set of
x at the merge point (at line 5). The defensive analysis, however, has to be conservative
and not compute values that may later become >. Therefore, it will add a1 to the final
points-to set of x only if it can also prove that the points-to set of x in the second branch is
bounded, i.e., non-empty. If the analysis is not certain of this, the points-to sets of x, both
in the second branch and at the merge point, stay empty. Inability to bound the points to
set of x in the second branch can be due a variety of reasons: e.g., there can be opaque code
inside notFullyAnalyzed, or the analysis may reach its maximum context depth, so that
the return value of the method is not tracked precisely.

Heap manipulation. Similar treatment applies to all cases of points-to sets (e.g., for
complex access paths) when information is merged: the analysis yields a non-empty result
only if it is certain that the result could not have been invalidated by any other code, available
or not. For instance, consider the following example of heap store instructions:

x.fld = new A(); // abstract object a1, x.fld points-to set is {a1}
y.fld = notFullyAnalyzed(); // x.fld points-to set is {}

After the first instruction, the points-to set of access path x.fld is computed to be {a1}.
However, in most cases, the analysis will not be able to ascertain that x and y are not
aliased. Therefore, after the second instruction, the points-to set of x.fld will be empty,
i.e., unknown. This reflects well the defensive nature of the analysis: whenever uncertain,
points-to sets will default to empty, i.e., undetermined.
Generally, since the analysis is flow-sensitive and access-path based, store instructions certain
to operate on the same object perform strong updates, while store instructions that possibly
operate on the same object perform weak updates:

x.fld = new A(); // abstract object a1, x.fld points-to set is {a1}
x.fld = new B(); // abstract object b1, x.fld points-to set is {b1}
y.fld = new B(); // abstract object b2, x.fld points-to set is {b1, b2}

In this case, the points-to information of access path x.fld is set to {b1} after the second
store instruction, ignoring the previous contents. (The example assumes that types A and
B are both compatible with the static type of x.fld.) After the third store instruction,
however, a new element is added to the points-to set—again, under the assumption that the
analysis cannot determine whether x and y are aliased.
The different element in defensive analysis is that if any of the involved points-to sets is
empty, both strong and weak updates yield an empty points-to set. For instance, replacing
either of the last two allocations (new B()) above with a call to opaque (or not fully analyzed)
code would make all subsequent points-to sets of x.fld be empty.

Method calls. Defensive analysis computes sound may-point-to information simultaneously
with sound call-graph information. The analysis employs the same principles for the call-
graph representation as for points-to: a finite set of method call targets means that the set
is guaranteed bounded, while an empty set of method call targets means that the analysis
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cannot (yet) establish that all target methods are known.
To compute a sound over-approximation of method call targets, one needs a bounded may-
point-to set for the receiver. Otherwise, the receiver object could be unknown—e.g., an
instance of a dynamically loaded class—resulting in an unsound call-graph.
When the set of method call targets is not bounded, dynamic calls cannot be resolved and
the analysis has to be conservative. For instance, in the example below, a conventional
unsound analysis would resolve the virtual call x.foo() to, at least, the method A::foo,
i.e., foo in class A.

if (complexCondition())
x = new A(); // abstract object a1

else
x = notFullyAnalyzed();

x.foo();

In contrast, recall that for a defensive analysis the points-to set of x at the point of the call to
foo is empty. Accordingly, the defensive analysis does not resolve the virtual call at all: per
the lazy evaluation principle, there is no point of computing what one target of the call will
do, when other targets are unknown and full soundness (i.e., guaranteed over-approximation)
is required. This means that all heap information (i.e., all access-path points-to information,
except for trivial access paths consisting of a single local variable and no fields) that held
before the method call ceases to hold after it! (There are notable exceptions—e.g., for access
paths with final fields, or for cases when an escape analysis can establish that some part of
the heap does not escape into the called method. Section 7.4 discusses such intricacies.)
When method calls can be resolved, the target methods have to be analyzed under a context
uniquely identifying the callee. A defensive analysis may know all methods that can get
called at a certain point, but it cannot know all callers of a method. Consider the following
example:

1 void caller() {
2 A x = new A(); // abstract object a1
3 callee(x);
4 }
5

6 void callee(A y) {
7 ...
8 }

Assume that there is no other discernible call to callee anywhere in the program. An
unsound analysis would establish that variable y in callee (i.e., immediately after line 6)
points to abstract object a1. A defensive analysis, however, cannot do the same uncondi-
tionally. The points-to set of y without context information has to be the empty set. The
reason is that there may be completely unknown callers of callee—e.g., in existing code,
via reflection, or in dynamically loaded code. Such callers could pass different objects as
arguments to callee and the analysis cannot upper-bound the set of such arguments. Thus,
the only safe answer for a defensive analysis is “undetermined”—i.e., an empty set.
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Thus, in order to propagate analysis results inter-procedurally, a defensive analysis has to
leverage context information. In the above example, what the analysis will establish is that
y points to a1 conditionally, under context 3, signifying the call-site instruction (line 3 in
the code snippet).
The above implies that the use of context in a defensive analysis is rather different than
in a traditional unsound points-to analysis. Contexts in standard points-to analysis can be
summarizing: a single context can merge arbitrary concrete (dynamic) executions, as long as
any single concrete execution maps uniquely to a context. For instance, a 1-object-sensitive
analysis [105] merges all calls to a method as long as they have the same abstract receiver
object, independently of call sites.
Context in a conventional analysis only adds precision, relative to a context-insensitive analy-
sis. In contrast, context in a defensive analysis is necessary for correctness: since information
is collected per-program-point, propagating points-to sets from a call site to a callee can only
be done under a context that identifies the call-site program point. Contexts cannot freely
summarize multiple invocation instructions, because there may be others, yet unknown,
invocations that would result in the same context.
Therefore, a context-sensitive defensive analysis has to be, at a minimum, call-site sensi-
tive [137, 140]: the call site of an analyzed method has to be part of the context (as will,
for deeper context, the call site of the caller, the call site of the caller’s caller, etc.). Other
kinds of context (e.g., object-sensitive context [105, 142]) can be added for extra precision.

7.3 A Model of Defensive Analysis

We next present a rigorous model of our defensive analysis. The model is based upon the
input domain and the minimal intermediate language presented in previous chapters—also
presented here for clarity. The language can be straightforwardly enhanced with features
such as arrays, static members and calls, exceptions, etc. The input program is assumed
to be in a single-return-per-method form. We will use the following formalism, auxiliary
functions and predicates throughout:

V is a set of variables v, u
T is a set of types T, S
F is a set of fields f
M is a set of methods meth
I is a set of instruction labels i, j, k
C is a set of contexts c, d
O is a set of abstract objects ô
P is a set of access paths ap
N is the set of natural numbers n

i: v = new T() object allocation
i: v = u move (or assignment)
i: v = u.f field load
i: v.f = u field store
i: v.meth(*) virtual call
i: return method return
i: <unknown> anything else

Figure 7.1: Input domains and common meta-variables used, as well as the instruction set
of the intermediate language.
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• Instructions are linked into a control-flow graph, via relation i NEXT−−−−→ j.

• Objects can potentially identify their allocation instruction, e.g., ôi.

• methT is the result of looking up method signature meth in type T.

• meth[n] is the n-th instruction of method meth.

• We overload the “∈” operator to more than set membership, in unambiguous contexts,
namely: i ∈ meth (instruction is in method), f ∈ ap (field is in access path), ô ∈ T
(abstract object is of type), v ∈ T (variable is of type).

• arg meth
n and arg i

n denote the n-th formal or actual arg of a method and invocation in-
struction, respectively. (By convention, the this/base variable of a method invocation
is assumed to be the 0-th argument.)

• ap[v/u] is the access path ap after substituting the base v to u (if applicable).

7.3.1 Analysis Structure

Figure 7.1 shows the analysis specification, in terms of constraints. Any solution satisfying
these constraints has the desired soundness property and in Section 7.3.2 we discuss extra
considerations so that the constraints can also be used to compute a solution. We recom-
mend following the figure together with our text explaining the rules: although the rules
are precise (transcribed from a mechanized logical specification) some are hard to follow
without explanation of their intent beforehand. The analysis constraints define the following
relations:

• The AccessPathPointsTo relation, in two varieties, before and after an instruction:
i : ap IN−→c ô and i : p OUT−−−→c ô (ap may point to ô before/after instruction i executed
under context c). This is our sound may-point-to relation: if, at the end of the analysis,
the set of ô for given i, p, c is not empty, it will be a superset of the abstract objects ô
pointed by ap at the given program point and context during any dynamic execution.5

• The MayCall relation, i.e., our sound call-graph representation: i CALLS−−−−→
c

c′ meth (in-
struction i executed under context c may call method meth and the resulting context
will be c′).

• The Reachable relation, methc, denoting that method meth is reachable under context
c, and should, thus, be analyzed. This relation is partially populated when the analysis
starts: it holds an initial set of methods, under the empty context Init, that should
be analyzed.

5To be precise, concrete objects arise during execution but we are considering their standard mapping to
abstract objects, per allocation site.
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(Alloc)
i : v = new T() i ∈ meth methc

i : v OUT−−−→c ôi

(Move)
i : v = u i : ap IN−→c ô

i : ap[u/v] OUT−−−→c ô

(Load)
i : u = v.f i : v.f IN−→c ô

i : u OUT−−−→c ô
(Store-1)

i : u.f = v i : v IN−→c ô

i : u.f OUT−−−→c ô

(Store-2)
i : u.f = v i : v IN−→c ô i : w.f IN−→c ô′ w 6= u

i : w.f OUT−−−→c ô i : w.f OUT−−−→c ô′

(CFG-Join)
j

NEXT−−−−→ i j : ap OUT−−−→c ô ∀k : (k NEXT−−−−→ i) =⇒ (k : ap OUT−−−→c *)
i : ap IN−→c ô

(Frame-1)
i : v IN−→c ô ¬(i : v = *) ¬(i : <unknown>)

i : v OUT−−−→c ô

(Frame-2)

i : ap IN−→c ô ap = v.*
¬(i : *.meth(*)) ¬(i : *.f = *) ¬(i : v = *) ¬(i : <unknown>)

i : ap OUT−−−→c ô

(Frame-3)
i : *.f = * i : ap IN−→c ô f /∈ ap

i : ap OUT−−−→c ô

(Call)
i : v.meth(*) i : v IN−→c ô ô ∈ T c′ = NC(i, c, ô)

methT
c′

i
CALLS−−−−→

c

c′ methT

(Args)
i

CALLS−−−−→
c

c′ meth i : ap IN−→c ô j = meth[0]
j : ap[arg i

n/arg meth
n ] IN−→c′ ô
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(Ret)

j : return j ∈ meth i
CALLS−−−−→

c

d meth j : ap IN−→d ô ap = v.*

{
∀ meth’, c’ : (i CALLS−−−−→

c

c′ meth’) =⇒
(
∃ j’, ap’ :

(j′ : return) ∧ (j’ ∈ meth’) ∧ (ap = ap’[arg meth’
n /arg i

n]) ∧ (j′ : ap’ IN−→c′ ∗)
)}

i : ap[arg meth
n /arg i

n] OUT−−−→c ô

Figure 7.1: Inference Rules for Defensive Points-to Analysis.

Alloc, Move, Load, Store-1. The first four rules of the analysis are rather straightforward.
The Alloc rule is the only one with some minimal subtlety: if an object is freshly allocated,
we know that the variable it is directly assigned to points to it. This inference is valid in
any reachable context, even the initial, making-no-assumptions, Init context. Therefore
this rule is responsible for kickstarting the analysis, producing the first points-to inferences
(valid locally) that will then propagate.

Store-2. The Store-2 rule is the first one exhibiting the defensive and lazy features of the
analysis. The rule performs a “weak update” on points-to sets of possibly affected access
paths, as long as they are guaranteed to be bounded, i.e., they are non-empty. At a store
instruction, u.f = v, if an access path w.f has a base explicitly different from u (with f being
the same), then its points-to set is augmented with any element (ô) of the points-to set of v,
while maintaining its original elements (ô′). This rule defensively adds more information to
guarantee an over-approximation in the case of access paths that may be aliases for the same
object. The subtlety of the rule lies in its handling of empty points-to sets. If either of the
points-to sets (of v or of w.f) is empty before the instruction, the rule does not match, hence
the points-to set of w.f after the instruction does not acquire any contents. This is consistent
with our sound handling: if the earlier contents or the update cannot be upper-bounded,
then the resulting points-to set cannot be, either.
Note the contrast between rules Store-1 and Store-2. We do not need to determine
precisely the aliasing relationship between base variables u and w. If there is a chance that
the variables are aliased, it is safe to conservatively add more possible values to the points-
to set of w.f. In the case of Store-1, however, we could do better than the conservative
treatment and perform a strong update.

CFG-Join. The next rule deals with merging information from an instruction’s predecessors
(or merely propagating it, in the case of a single predecessor).
Informally, the rule states that if some predecessor instruction, j, has established that ap
can point to ô, and if all other predecessors, k, establish that ap points to something (so
that its points-to set is non-empty, i.e., bounded) then the information is propagated to the
points-to relation of the successor instruction. (We use * to mean “any value”, throughout
the rules.) Note the defensive handling: if even a single predecessor has an unbounded (i.e.,
empty) points-to set for ap, then the rule is not triggered and the resulting points-to set
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remains empty. (This conservative handling can be relaxed, to ignore predecessors that are
guaranteed to not affect a certain access path, as will be discussed in Section 7.4.)

Frame-1, Frame-2, Frame-3. The next three rules are frame rules, responsible for the
propagation of unchanged information.
Informally, the first rule merely says that points-to information for local variables (i.e., an
access path consisting of just “v”) is maintained after an instruction, if it existed before it,
as long as the instruction does not directly assign the local variable (as is the case for a load,
move, or allocation directly into this local variable). The soundness of this rule is predicated
on our earlier assumption of stack frame isolation: local variables are isolated from each
other, thread-private, and private to their allocating method. Therefore their points-to set
cannot change, except with instruction such as the above.
This is the first time we see a treatment of <unknown> instructions, which can encode
any richer instruction set than our basic intermediate language. The analysis conservatively
avoids propagating any points-to information over an unknown instruction. This is also
used to handle concurrency, under our simplified model: both monitorenter/monitorexit
instructions and all accesses to volatile variables in the input program are represented sim-
ply as <unknown> instructions in our intermediate language. (The treatment of <unknown>
collectively by the analysis rules ensures that all heap information is dropped at that program
point, i.e., points-to sets are empty after the instruction.)
The next two rules apply in the case of complex access paths, i.e., of length 2 or more.
(Actually rule Frame-3 also applies to variable-only access paths, but not meaningfully:
that case is subsumed by Frame-1.) First, similarly to the earlier rule, points-to information
for the access path is maintained after an instruction (assuming it held before it) unless the
instruction assigns the same base variable (again via a load, move, or allocation), or is a call,
store, or unknown. Second, points-to information for complex access paths is propagated
over all store instructions that affect fields not participating in the access path.
The soundness of these rules is predicated on the object isolation and concurrency model
assumptions of Section 7.1.3. Under these assumptions, the only way to change the points-
to set of an access path is via store instructions (on the same field), changing the base of
the access path, invoking (potentially opaque) methods, and executing unknown instructions
(including monitorenter/monitorexit). The rules have strong preconditions to preclude
these cases. At the level of the model, we only care about soundness under the given
assumptions, no matter how strict. In Section 7.4 we will discuss practical enhancements—
e.g., when method calls are fine because the analysis has computed the full potential of their
effects on the heap.

Call. The next rule uses points-to information to establish a sound call-graph. The
i

CALLS−−−−→
c

c′ meth relation over-approximates information using the same approach as points-
to sets: for a given invocation site, i, and context, c, the relation holds either an empty set
(i.e., no matching values exist for (i, ctx)—denoting an unbounded set of destinations—or
an over-approximation (i.e., a superset) of all possible targets of the invocation at i under c.
The rule is mostly a straightforward lookup of the target method, based on the receiver
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object’s type. There are a couple of subtleties, however. The receiver object needs to
have an upper-bounded (i.e., non-empty) points-to set, a new context is constructed using
function NC, and the target method is considered reachable under the new context. The
exact definition of NC will determine the context sensitivity of the analysis. (We will return
to this point promptly in Section 7.4.)

Args. The Args rule handles points-to information propagation over calls, from caller to
callee. Points-to information for rebased access paths is established for the first instruction
(j = meth[0]) of a called method, under the callee’s established context. The rule examines
all access paths whose base variable is an actual argument of the call, as long as they have
some points-to information (before the invocation).
Recall our discussion of Section 7.2 regarding method calls and the use of context. The
points-to information established at a callee cannot be conflating different callers—there
may be unknown callers for the same method, either in existing code (e.g., via reflection)
or in dynamically loaded code. Therefore, if we might mix callers, the only sound inference
for local points-to sets is >: we cannot bound the values that all callers may pass. Instead,
we need to have contexts that uniquely identify the caller, so that we can safely propagate
bounded points-to sets.
A straightforward way to ensure that the pair (meth, c′) uniquely identifies invocation in-
struction i and context c is to use call-site sensitivity: c′ is formed by combining i and c—that
is, NC(i, c, ô) = cons(i, c). (Contexts can typically grow only up to a pre-determined depth,
at which point the NC function will not return anything, the Call rule will fail to make an
inference, hence the current rule will not fire, leaving points-to sets at the callee empty, i.e.,
undetermined.)

Ret. The final rule performs a similar propagation of values, this time from callee to caller.
The rule is significantly complicated by its last condition (the forall-exists implication),
which is key for soundness. The rule states that if some callee has points-to information for
complex access path ap at a return point, then this information is propagated to the caller,
provided that all other callees for the same instruction, i, and caller context, c, also have
some (i.e., non-empty) points-to information for the same access path p at their return point.
A further complication is that access path ap will appear rebased differently for each one of
the callees—e.g., access path actual.field may appear as formalA.fld and formalB.fld
in two callees A and B. The rule has to also account for such rebasing.
Note also the earlier condition that access path ap be complex, i.e., to have length greater
than 1. This reflects call-by-value semantics for references: for a call meth(actual) to a
method with signature meth(F formal), the points-to information of access path formal is
not reflected back to the caller, yet the points-to information of longer access paths, e.g.,
formal.fld, is.
The handling of a method return is the only point where a context can become stronger.
Facts that were inferred to hold under the more specific context, c′, are now established,
modulo rebasing, under c. Since c′ has to uniquely identify c, typically c will be shorter by
one context element.
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7.3.2 Reasoning

We prove the soundness of the analysis under an informal language model. We do not
attempt to formalize the full effects of opaque code (e.g., what reflection or native code can
or cannot do). Such a formalization would be tedious and partial, as new capabilities are
added to reflection or dynamic loading APIs with every JDK version. Instead, we establish
that the analysis rules always compute over-approximate finite points-to sets (or empty
sets), and that this property cannot be affected by opaque code under the common informal
understanding of the assumptions of Section 7.1.3. For instance, it is clear from the “stack
frame isolation” assumption that local variables cannot change values except by action of
the current instruction, i.e., that rule Frame-1 is alone responsible for soundly transferring
such points-to information from the program point before an instruction to after.
A detailed model that formally captures “stack frame isolation” is perhaps desirable assur-
ance (in the vein of verified compilers) but adds nothing to the effort to invent a realistic,
sound points-to analysis. By analogy, sound compiler optimizations (i.e., ones that do not
break the program) exist in virtually all mainstream compilers, but a minuscule fraction of
those have been formally verified.
There are two main properties of the defensive analysis:

• Soundness: the analysis computes an over-approximation of points-to sets that may
arise during any program execution. Any non-empty set contains a superset of its
dynamic contents under any possible execution. Any empty set is considered trivially
“over-approximate”, to avoid special-casing all our statements. In effect, the analysis
produces a set of soundness markers, Claim(P ), which coincide with the non-empty
points-to sets. No claims are made about empty points-to sets.

• Laziness: the analysis does not waste work; elements that enter a points-to set are
never removed (by reverting the set to the > value—i.e., an empty set).

Theorem 1. There exists an evaluation order of the rules, such that the defensive analysis
model is sound: all points-to sets computed are over-approximate, i.e., are either empty
or contain all possible values arising during program execution, under the assumptions of
Section 7.1.3.

Proof. The proof is inductive. Initially, all points-to/call-target sets encoded in relations
IN−→, OUT−−−→, CALLS−−−−→ are empty. (We treat relation i : ap IN−→c ô as encoding a set of ôs for
given i, ap, c; relation i CALLS−−−−→

c

c′ meth as encoding a set of meths for given i, c, c′, etc.)
Therefore, we start from a trivially over-approximate state.
Importantly, the inductive step does not hold for a single application of a rule. Intermediate
states of evaluation may not be over-approximate: an element may enter a set before the
rest of its contents. (For instance, consider a statement v = u and prior points-to set {ô1,
ô2} for u. A single application of the Move rule for ô1 will leave the points-to set of v in a
non-over-approximate state: the set will be missing the ô2 value.)

G. Kastrinis 136



Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees

Thus, the inductive step applies to states after past rules have been evaluated fully. Consider
a rule R as a monotonic update to a set of values s. That is, R(s) ⊇ s. A rule has been
fully evaluated at fixpoint, i.e., when R(s) = s. The next inductive step considers the state
after a full evaluation of any rule.
The inductive step of the proof is captured in a lemma:

Lemma 1. The analysis rules preserve soundness under full single-rule evaluation. That is,
if relations IN−→, OUT−−−→, and CALLS−−−−→ encode over-approximate points-to/call-target sets before
a full evaluation of a rule, they will encode over-approximate sets after a full evaluation.

Proof sketch of Lemma 1. The lemma is established by exhaustive examination of the
rules. We mentioned key parts of the reasoning in our earlier presentation of the rules.
All rules over complex access paths (i.e., of length ≥ 2) affect the heap and require the
“concurrency model” and “object isolation” assumptions of Section 7.1.3. Rules on plain-
variable access paths use the “stack-frame isolation” assumption. Every rule is careful to
produce values for points-to/call-target sets only if all input sets are non-empty (i.e., guar-
anteed over-approximate and bounded), and to consider all possible such values. For rules
Call, Args, and Ret the lemma holds only under the previously-stated assumption on the
NC constructor: the pair (meth, c′) needs to uniquely identify invocation instruction i and
context c. Consider, for example, rule Args. We need to establish that the points-to set
j : ap[arg i

n/arg meth
n ] IN−→c′ is over-approximate given that i : ap IN−→c is. (The rule form

makes the former be a superset of the latter, we need to reason that they are actually the
same set.) Instruction j uniquely identifies method meth and actual-to-formal access-path
rebasing can never merge access paths (since different formal variables cannot have the same
names). If c′ and meth arise for only a single call-site and caller-context pair, (i, c), then the
property holds. �

The lemma establishes the inductive step of our proof. The sets computed by the analysis
are initially over-approximate and remain over-approximate after every full evaluation of a
single rule. At fixpoint, when full evaluation of any rule no longer changes the output sets,
the property holds, concluding the theorem’s proof. �

An interesting question is whether any evaluation order of the rules is guaranteed to yield
sound points-to sets at fixpoint. The answer is “almost yes”. All but one of the analysis
rules are monotonic (in the usual domain of sets, i.e., with the empty set at the bottom),
therefore yield a confluent evaluation: any order will yield the same result at fixpoint. (We
have a machine-checked proof of the latter property, by encoding the rules in the Datalog
language, which allows only recursion through monotonic inferences.) The single exception
is the Ret rule. There is hidden non-monotonicity in the ∀ iteration over call-graph edges,
which contains an implication. If the Call rule is not fully evaluated when the Ret rule
applies, it is possible to produce points-to sets that will later be invalidated, because more
callees will be discovered (for whom the points-to relationship does not hold for the given
access path). Therefore, for soundness to hold, the analysis rules have to always apply in
such a fashion that the Call rule is fully evaluated (not globally but on its own, per the
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earlier definition) before the Ret rule is considered. This evaluation order should be enforced
by any sound implementation of the rules of Figure 7.1.
Based on the above observation on the rules’ monotonicity, we also establish our laziness
result.

Theorem 2. A points-to set encoded in our analysis relations grows monotonically, as long
as the Ret rule is applied only during local fixpoints (i.e., after full evaluation) of the Call
rule.

7.4 Implementation and Discussion

We have implemented defensive analysis in the Datalog language and integrated it with
Doop. The full implementation consists of over 400 logical rules, yet the minimal model
of Section 7.3 captures well its essential features. We also completed a second, largely
equivalent, implementation on the Soufflé Datalog engine [133]. Both implementations are
publicly available in the Doop repository.
The defensive analysis model admits several enhancements and refinements, as well as gives
rise to observations. We discuss such topics next, especially noting those that pertain to our
full-fledged implementation of the analysis.

Observations. A defensive analysis is naturally modular, yet the question is whether it
can produce useful results. The analysis can be applied to any subset of the code of an
application or library and it will produce sound inferences. Omitting code merely means
that more points-to sets will end up being empty: the analysis only infers points-to sets
when an upper-bound of their contents is known based on the current code under analysis.
This defensive approach, however, may end up computing too many empty points-to sets.
Therefore, the key quality metric is that of the analysis’s coverage: for how many program
elements (e.g., local variables) can the analysis produce non-empty points-to information?
Coverage has similarly been used as a key metric in other work that infers specifications
modularly [19].
Additionally, a defensive analysis is not in competition with a conventional, unsound analysis,
but instead complements it. The defensive analysis computes which of the points-to sets have
known upper bounds and which are potentially undetermined. If, instead of an empty set, a
client desires to receive the (incomplete) subset of known contents for non-bounded points-to
sets, the results of the two analyses can be trivially combined.

Pragmatics. With minor adaptation, the analysis logic can work on static single assignment
(SSA) input. Our implementation is indeed based on an SSA intermediate language. The
benefit is that for trivial access paths (just a single variable) points-to information does not
need to be kept per-instruction: the points-to set remains unchanged, since the variable is
not re-assigned.
A full-fledged analysis should cover more language features than the model of Section 7.3.
Our implementation handles, in a manner similar to the earlier rules, features such as static
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and special method invocations, static fields, final fields, constructors (also implicitly ini-
tializing fields to null), and more. Of particular note are final instance and static fields,
which allow propagating information in a lot more settings (e.g., even when the analysis
context depth has been reached and points-to sets would normally default to empty after a
call).

Expanding the Analysis Reach. Defensive analysis is naturally pessimistic. Its key fea-
ture is that it will populate points-to sets only when it can establish that they are bounded.
However, the analysis uses simplistic techniques to establish such boundedness, i.e., it rec-
ognizes guaranteed-safe cases.
There are several sound inferences that the analysis could make but the model of Section 7.3
does not. However, the principle remains: when the analysis errs in modeling something
precisely (as all static analyses will do, for different cases), it will err on the side of be-
ing conservative, i.e., compute nothing. Although defensive analysis will never reach the
inferences of an unsound analysis (even without any opaque code), it can be enhanced to
approach it. Arbitrarily complex mechanisms can be added to increase the coverage of the
analysis (i.e., the true properties it can infer precisely):

• The rule shown earlier for control-flow merge points is conservative. Information prop-
agates at control-flow merge points if all of the predecessors have some points-to infor-
mation for the access path in question. This condition is too strict: several predecessors
will not have points-to information for an access path simply because the access path
is not even assigned in the predecessor branch (e.g., it is based on a local variable that
is set on a different branch only). Consider a program fragment:

x.f = new A();
while (...) {

y = x.f;
}

The head of the loop has two control-flow predecessors: one due to linear control flow
and one due to the loop back-edge. However, the loop itself does not change the points-
to set of x.f. It is too conservative to demand that the back-edge also have a bounded
points-to set for x.f before considering the linear control-flow edge.
In our implementation we have special support for detecting that a program path does
not affect an access path. We use this to limit the ∀ quantification of the rule to range
over “relevant” predecessors. We note that this scenario only applies to complex access
paths in practice, due to the SSA form of our input.

• When an unknown method call is encountered, the analysis assumes worst-case behav-
ior with respect to its heap information. This can be relaxed arbitrarily by modeling
system methods and annotating them appropriately. Possible information about calls
includes “this library call does not affect user-level objects”, “this method only affects
its arguments”, “this method does not affect static variables”, etc. Additional manual
modeling includes library collections (including arrays) which can be represented as
abstract objects.
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Our current implementation does some minimal modeling of library collections and
annotates only a handful of methods, as a proof-of-concept. A representative example
is that of method Float.floatToRawIntBits. This native method is called by the
implementation of the put operation in Java HashMaps and, since it is opaque, would
prevent all propagation of points-to information beyond a put call.

• The analysis coverage can be expanded by employing it jointly with a must-alias anal-
ysis [22, 67, 170], an escape analysis [12, 37], and a thread-escape analysis. A must-alias
analysis will increase the applicability of the rule for heap loads, and can be combined
with the rule for heap stores to enable more strong updates. An escape analysis will
result in less conservativeness in the propagation of information to further instruc-
tions (i.e., in frame rules). A thread-escape analysis can help relax our concurrency
model. We currently support simple, conservative versions of all three analyses in our
implementation, but do not enable them by default.

Why access paths? Our defensive analysis is access-path based, as opposed to instance-
field based. That is, instead of inferences of the form “abstract object ô1 points to ô2 via
field f” our analysis makes inferences of the form “program expression v.f points to ô2”.
We conjecture that this is a necessity for a sound analysis. The issue is one of logical
quantification. What is the meaning of the sentence “abstract object ô1 points to ô2 via
field f”? A natural definition is “some concrete object mapping to abstract object ô1 points
via field f to some concrete object mapping to ô2.” However, this definition is too weak to
allow sound inferences at the point of a load instruction. An alternative definition is “all
concrete objects mapping to abstract object ô1 point via field f to some concrete object
mapping to ô2.” However, this inference is impossible to establish soundly at any program
point: even if all concrete instances of the abstract object satisfy this property somewhere
(e.g., at the end of a constructor), there is virtually never a single point at which all past
concrete objects (mapping to the same abstract one) simultaneously satisfy the inference. It
is possible that, in future work, an analysis can distinguish the most recent instance of an
object [7]. At present, however, the access path abstraction seems like a particularly good
fit for our defensive analysis logic.
The analysis formulation of Section 7.3 assumes that all access paths exist in advance.
In the implementation, we instead create access paths lazily, as needed (an idea already
explored in previous chapters). The formulation is suitable for integration with other analyses
that use access paths. A particularly good fit is the must-alias analysis on access paths of
Chapter 5. Such an analysis improves our may-point-to analysis in several ways: it helps
analyze more load instructions; it helps perform strong updates at store instructions (when
the base variable of the store is a must-alias with the base of an access path). The may-
point-to and must-alias analyses can benefit from each other when run in iteration: a sound
must-alias analysis requires a sound call-graph over-approximation and vice versa. We have
integrated such a must-alias analysis in the implementation, but do not enable it by default
due to currently high cost.

Context depth. As seen earlier, a defensive analysis may compute empty (undetermined)
points-to sets because it has reached its maximum context depth. It is worth pointing out,
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however, that method calls further away than the maximum context depth can influence the
points-to inferences of a method. For an easy example, consider the case of a large number,
N , of methods that form a call chain and unconditionally return to their callers what their
callee returns to them. If the final (N -th) method returns a new object, then that object will
propagate all the way back to the first method of the call chain, regardless of the maximum
context depth, D. The limitation of context depth only concerns properties that depend on
conditions established more than D calls back in the call-stack.

7.5 Evaluation

There are five research questions that our evaluation seeks to answer:

• RQ1: Does defensive analysis produce coverage for large parts of realistic programs?
Or do points-to sets overwhelmingly stay empty?

• RQ2: Does the coverage of defensive analysis benefit from its advanced features (i.e.,
inter-procedural handling, as well as handling of control-flow merging)?

• RQ3: Does defensive analysis have an acceptable running time, given that it is flow-
sensitive and context-sensitive?

• RQ4: Does defensive analysis yield results that can benefit a client that requires
soundness, such as an optimization?

• RQ5: Can benefits be obtained for a fully relaxed concurrency model, as opposed to
the model of Section 7.1.3?

Setup. Since defensive analysis is a unique beast, it is indeed an interesting question to
ask what it can be compared against. As closest comparable (though still a very dissimilar
analysis) we chose to compare to a highly-precise conventional analysis with state-of-the-art
best-effort soundness: a 2-object-sensitive/heap-sensitive analysis (2objH) with reflection
support. This is the most precise analysis in the Doop framework that still manages to
scale to the majority of the DaCapo benchmarks. We use static best-effort reflection han-
dling (--enable-reflection-classic flag), i.e., the analysis tries to statically resolve all
reflection calls based on string matching.
We analyze, under JDK 1.7.0_75, the DaCapo benchmark programs [11] v.2006-10-MR2 as
well as v.9.12-Bach. The 9.12-Bach version contains several different programs, as well as
more recent versions of some of the same programs. (We show results for all of the v.2006-
10-MR2 benchmarks and for those of the v.9.12-Bach benchmarks that could be analyzed
by the Doop framework in under 3 hours.) We also use the two non-Android benchmarks
(NTI, jFlex) from the Julia set by Nikolić and Spoto [110]. We use the LogicBlox Datalog
engine, v.3.10.14, on a Xeon E5-2667 v.2 3.3GHz machine with only one thread running at
a time and 256GB of RAM.

141 G. Kastrinis



Explorations in Static Pointer Analysis: Adaptive Scalability and Strong Guarantees

Defensive analysis is run with a 5-call-site-sensitive context (5def for short). 3 instances (of
44 total) did not finish with the default precision in 3 hours: the 2objH baseline did not
finish for jython and h2; xalan did not finish for the 5def analysis. In these cases we used
lower precision: context-insensitive for the unsound analysis and 4-call-site-sensitive (4def )
for defensive. We use diacritical marks (* and ˆ) in the figures to remind the reader of the
different analysis setting for these benchmarks.

Coverage. Figure 7.2 shows the coverage of defensive analysis, i.e., the number of non-
empty points-to sets (for local variables) computed for all benchmarks. The input program
is in SSA form, therefore the points-to sets for variables are a normalized representation of
all points-to information in the program: they reflect the analysis-computed values for all
program expressions, separately for each control-flow point.
The analysis yields non-empty points-to sets for a significant portion of each program—the
median benchmark has 45.6% of variables with points-to information for some context,
while 35.5% have points-to information for a context Init (i.e., unconditionally).6 It is
worth emphasizing that conditional points-to guarantees (under some context) are valuable
in a defensive analysis: they are often the best any analysis can ever do! Recall our earlier
discussion of Section 7.2: many of the useful inferences of a defensive analysis will be under
some context even when the inference holds under all known contexts in existing code. No
analysis can preclude the existence of other callers in opaque, and possibly not yet existing,
code. Such callers can arise in dynamically generated code and can invoke existing methods,
e.g., using reflection.
Thus, the defensive analysis achieves a large proportion of the benefits of an unsound anal-
ysis, while guaranteeing these results against uses of opaque code. We can answer RQ1
affirmatively: defensive analysis covers a large part of realistic programs (over one-third
unconditionally; close to one half under specific calling conditions), despite its conservative
nature.

Comparison with intra-procedural. We have earlier referred to the “easy”, intra-
procedural parts of the analysis reasoning: what a compiler or VM would likely do to perform
sound local data-flow analysis. This is the subject of RQ2, also answered by Figure 7.2.
The figure includes results for an intra-procedural baseline analysis that captures the low-
hanging fruit of sound reasoning: local variables that directly or transitively (via “move”
instructions) get assigned an allocated object. That is, the “Intra-proc Sound” analysis is
otherwise the same as the full “defensive” logic, with the exception of the new “interesting”
cases (control-flow merging, heap manipulation, and inter-procedural propagation).
The result answers RQ2 affirmatively: defensive analysis has significantly higher coverage
than the baseline intra-procedural analysis. (And the difference only grows when considering
an actual client, in later experiments.) Although the benefit is not broken down further in the
figure, the handling of method calls alone (i.e., rules Call, Args and Ret) is responsible for
the lion’s share of the difference between the full defensive analysis and the intra-procedural

6If a variable has a points-to value for context Init, then it also has that value under every specific
context that arises for the variable. Therefore, points-to sizes for Init are always lower than conditional,
context-specific sizes.
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Figure 7.2: Percentage of application variables (deemed reachable by baseline 2objH analysis)
that have non-empty points-to sets for defensive analysis under some context and Init
context (no assumptions). Intra-procedural sound points-to analysis (defensive minus the
complex cases) shown as baseline. Arithmetic means are plotted as lines.

sound analysis.

Running time. Figure 7.3 shows the running times of the analysis, plotted next to that
of 2objH, for reference. Although the two analyses are dissimilar, 2objH is qualitatively the
closest one can get to defensive analysis with the current state of the art: it is an analysis
with high precision, run with best-effort soundness support. Therefore, 2objH can serve as
a realistic point of reference. As can be seen, the running times of defensive analysis are
realistically low, although its flow-sensitive and 5-call-site-sensitive nature suggests it would
be a prohibitively heavy analysis. This answers RQ3 and confirms the benefits of laziness:
a defensive analysis that only populates points-to sets once they are definitely bounded,
achieves scalability for deep context.

Client analysis: devirtualization. Our baseline analysis, 2objH, is highly precise and
effective in challenges such as devirtualizing calls (resolving virtual calls to a single target
method). On average, it can devirtualize 89.3% of the calls in the benchmarks studied (min
78.5%, max 95.2%). However, these results are unsound and a compiler cannot act upon
them. For optimization clients, such as devirtualization, soundness is essential. Using sound
results, a JIT compiler can skip dynamic tests (of the inline caching optimization) for all
calls that the analysis soundly covers.
Figure 7.4 shows the virtual calls that defensive analysis devirtualizes, as a percentage of
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Figure 7.3: Execution time (in seconds) of defensive analysis, with running time of 2objH
(with unsound reflection handling) shown as a baseline. Labels are shown for defensive
analysis only to avoid crowding the plot.

those devirtualized by the unsound analysis.
As can be seen, defensive analysis manages to recover a large part of the benefit of an unsound
analysis (median 44.8% for optimization under a context guard, 38.7% for unconditional,
Init context, optimization), performing much better than the baseline intra-procedural
must-analysis (at 14.6%). This answers RQ4 affirmatively: the coverage of defensive anal-
ysis translates into real benefit for realistic clients.

Concurrency model. A compiler (JIT or AOT) author may (rightly) remark that the
concurrency model of Section 7.1.3 is not appropriate for automatic optimizations. The Java
concurrency model permits a lot more relaxed behaviors, so the analysis is not sound for full
Java as stated. However, the benefit of defensive analysis is that it starts from a sound basis
and can add to it conservatively, only when it is certain that soundness cannot possibly be
violated. Accordingly, we can remove the assumption that all shared data are accessed while
holding mutexes, by applying the load/store rules only when objects trivially do not escape
their allocating thread. We show the updated numbers for the devirtualization client (now
fully sound for Java!) in Figure 7.5. The difference in impact is minimal: 43% of virtual call
sites can be devirtualized conditionally, under some context, while 36% can be devirtualized
unconditionally. This helps answer RQ5: defensive analysis can yield actionable results for
a well-known optimization, under the Java memory model, for a large portion of realistic
programs.

Points-to set sizes. Finally, it is interesting to quantify the precision of the defensive
analysis, for the points-to sets it covers. This precision is expected to be high, since defensive
analysis is flow- and context-sensitive, but exact figures help put it in perspective.
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Figure 7.4: Virtual call sites that are found to have receiver objects of a single type. These
call sites can be soundly devirtualized. Numbers are shown as percentages of devirtualization
achieved by unsound 2objH analysis.
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chart 1.09 1.09 1.53 1.07 eclipse
eclipse 1.06 1.31 2.07 1.04 h2*
fop 1.00 1.03 1.04 1.01 luindex
hsqld 1.01 1.04 1.08 1.03 lusearch
jython* 1.01 6.05 1.04 1.01 pmd
luindex 1.02 1.02 1.08 1.05 sunflow
lusearch 1.04 1.06 1.19 1.04 xalanˆ

pmd 1.01 1.05 1.02 1.01 jFlex
xalan 1.05 1.12 1.03 1.03 NTI

“defensive” mean 1.03
“2objH” mean 1.51

Table 7.1: Average number of abstract objects pointed-by per variable, for variables for
which both analyses compute results.

Table 7.1 shows average points-to set sizes for the defensive analysis vs. the 2objH analysis.
The sets (excluding null values) are computed over variables covered by both analyses,
for non-empty defensive analysis sets and under context Init of the defensive analysis,
i.e., unconditionally. (The numbers are for the simplistic concurrency model, but remain
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Figure 7.5: Virtual call sites (percentage of 2objH) that are found to have receiver objects of
a single type. Updates Figure 7.4, this time with soundness under a relaxed memory model.

unchanged to two significant digits for the relaxed concurrency model.)
As can be seen, the defensive analysis is highly precise when it produces non-empty points-to
sets, typically yielding points-to set sizes very close to 1. 2objH is also a very precise analysis
(for variables with bounded points-to sets), so it remains competitive, yet clearly less precise.
Notably, points-to set sizes close to 1 are the Holy Grail of points-to analysis: such precision
is actionable for nearly all conceivable clients of a points-to analysis.

7.6 Summary

Static analysis has long suffered from unsoundness for perfectly realistic language features,
such as reflection, native code, or dynamic loading. We presented a new analysis architecture
that achieves soundness by being defensive. Despite its conservative nature, the analysis
manages to yield useful results for a large subset of the code in realistic Java programs,
while being efficient and scalable. Additionally, the analysis is modular, as it can be applied
to any subset of a program and will yield sound results.
We expect this approach to open significant avenues for further work. The analysis archi-
tecture can serve as the basis of other sound analysis designs. The defensive analysis itself
can be combined with several other analyses (may-escape, must-alias) that have so far been
hindered by the lack of a sound substrate.
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Part III

Epilogue
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8. RELATED WORK

Hermits United. We meet up every 10
years, swap stories about caves. It’s
good fun. . . for a hermit.

The 10th Doctor - Doctor Who

8.1 Hybrid-Context Sensitivity

We have discussed directly related work throughout Chapter 3. Here we selectively mention
a few techniques that, although not directly related to ours, offer alternative approaches to
sweet spots in the precision/performance tradeoff.
Special-purpose combinations of context sensitivity have been used in the past, but have
required manual identification of classes to be treated separately (e.g., Java collection classes,
or library factory methods). An excellent representative is the TAJ work for taint analysis
of Java web applications [157]. In contrast, we have sought to map the space and identify
interesting hybrids for general application of context sensitivity, over the entire program.
The analyses we examined are context-sensitive but flow-insensitive. We can achieve several
of the benefits of flow sensitivity by applying the analysis on the static single assignment
(SSA) intermediate form of the program. This is easy to do with a mere flag setting on the
Doop framework. However, the impact of the SSA transformation on the input is minimal.
The default intermediate language used as input in Doop (the Jimple representation of the
Soot framework [158, 159]) is already close to SSA form, although it does not guarantee that
every variable is strictly single-assignment without requesting it explicitly. Published work
by Lhoták and Chung [82] has shown that much of the benefit of flow sensitivity derives
from the ability to do strong updates of the points-to information. Lhoták and Chung then
exploited this insight to derive analyses with similar benefit to a full flow-sensitive analysis
at lower cost.
A demand-driven evaluation strategy reduces the cost of an analysis by computing only those
results that are necessary for a client program analysis [58, 150, 151, 170]. This is a useful
approach for client analyses that focus on specific locations in a program, but if the client
needs results from the entire program, then demand-driven analysis is typically slower than
an exhaustive analysis.
Reps [123] showed how to use the standard magic-sets optimization to automatically de-
rive a demand-driven analysis from an exhaustive analysis (like ours). This optimization
combines the benefits of top-down and bottom-up evaluation of logic programs by adding
side-conditions to rules that limit the computation to just the required data.
An interesting recent approach to demand-driven analyses was introduced by Liang and Naik
[91]. Their “pruning” approach consists of first computing a coarse over-approximation of
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the points-to information, while keeping the provenance of this derivation, i.e., recording
which input facts have affected each part of the output. The input program is then pruned
so that parts that did not affect the interesting points of the output are eliminated. Then a
precise analysis is run, in order to establish the desired property.

8.2 Introspective Analysis

The effort to tune the context sensitivity of an analysis is pervasive in the literature. Nev-
ertheless, most approaches fundamentally differ from ours of Chapter 4, either by trying
to vary context sensitivity based on syntactic properties or by trying to focus on only a
part of the program that matters for answering a given query. In contrast, we attack the
context-sensitive scalability problem head-on, in the all-points points-to analysis setting,
with context used all over the program and library.
Typical scalable points-to analysis frameworks such as Wala [43] and Doop [16] employ
a multitude of low-level heuristics for tuning the precision and scalability of an analysis.
These include using extra context for collection classes, using a heap context for arrays
in an analysis without a context-sensitive heap, allocating strings or exceptions context-
insensitively, treating library factory methods with deeper context, etc. Such heuristics are
typically user-selected and prominent in the documentation of the respective frameworks,
and have also appeared in the literature (e.g., [69, 157]). However, all such approaches
are mere hard-wired heuristics and do not address the major scalability problem that our
approach aims to solve. The scalability issues identified in earlier literature and discussed
throughout this paper are present after all such heuristics have been employed.
A more general approach is the hybrid-context sensitivity of Chapter 3. Such a hybrid
analysis attempts to emulate call-site sensitivity for static method calls and object sensitivity
for dynamic calls. The approach becomes interesting when context is deep (e.g., how are
context elements merged when a dynamic call is made inside a static call?). Nevertheless, the
hybrid-context sensitivity approach does not change the essence of the problem we are trying
to solve. For hard-to-analyze applications, hybrid context-sensitive algorithms are equally
unscalable as their component algorithms. For the purposes of our experimental study, which
only tests the scalability of heavyweight benchmarks, hybrid-context sensitivity is virtually
indistinguishable from object sensitivity.
In recent years there have been many more instantiations of introspective analysis, with very
different metrics of cost and benefit. These modern instantiations outperform our original
Heuristic-A and Heuristic-B but keep the same flavor: Zipper [87] aims to achieve mostly-
guaranteed precision with heuristically better scalability, whereas Scaler [88] achieves guar-
anteed scalability and typically significantly better precision than a context-insensitive anal-
ysis.
More interesting applications of selective context sensitivity have been explored in the con-
text of demand-driven pointer analysis. A demand-driven evaluation strategy reduces the
cost of an analysis by computing only those results that are necessary for a client program
analysis [58, 150, 151, 170]. This is a useful approach for client analyses that focus on spe-
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cific locations in a program, but if the client needs results from the entire program, then
demand-driven analysis is typically slower than an exhaustive analysis.
In the demand-driven space, refinement-based analyses have been used primarily in the work
of Sridharan and Bodík [150] and of Liang and Naik [91]. Sridharan and Bodík introduce
refinement-based analysis as a way to adaptively increase the precision characteristics of
an existing analysis algorithm when a client analysis is not satisfied with the result. The
approach allows turning on field sensitivity, as well as higher call-site sensitivity for an
analysis algorithm. Yet, unlike ours, it is not a general approach that can apply to any kind
of context and a large number of different algorithms. Liang and Naik’s “pruning” approach
consists of first computing a coarse over-approximation of the points-to information, while
keeping the provenance of this derivation, i.e., recording which input facts have affected
each part of the output. The input program is then pruned so that parts that did not
affect the interesting points of the output are eliminated. Then a highly context-sensitive
precise analysis is run, in order to establish the desired property. This approach is similar to
introspective context sensitivity in that the analysis is run twice and a separate query over
the first-run result determines the second run’s characteristics. Nevertheless, our approach
requires no provenance computation (which is unlikely to scale for an all-points analysis)
and works even when we want answers for the entire program—i.e., when pruning is not
possible.
Both of the above demand-driven approaches can be viewed as complements of our intro-
spective context sensitivity. In the demand-driven world, it is possible to estimate the benefit
that a more precise analysis may yield: either the client is happy with the current level of
precision (which implies there is no further benefit to be obtained) or it is not, in which
case more precision should be added. In our all-points pointer analysis problem we have
no such information. This motivates our cost-based heuristics, which attempt to estimate
“what can go wrong” when more precision gets added, as opposed to “what can be gained”,
as in demand-driven techniques.

8.3 Must-Alias Analysis

Logical Model

There are several approaches in the literature that present must-analyses in the pointer
analysis setting or employ them in a may-analysis. Our approach is a must-alias analysis
applied to Java bytecode, but conceptually it is distinguished by its minimizing the distance
between the implementation and the declarative specification.
Ma et al. [98] present an algorithm for null-pointer dereference detection using a context-
insensitive may-alias and a must-alias analysis; the latter is used to increase the precision of
the former, by enabling strong updates when possible.
Nikolić and Spoto [110] present a must-alias analysis that tracks aliases between program
expressions and local variables (or stack locations, since they analyze Java bytecode, which is
a stack-based representation). The analysis is related to ours both because of its application
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to Java bytecode and because it is constraint-based: the analysis is a generator of constraints,
which are subsequently solved to produce the analysis results. Abstractly, this is a relative
of our Datalog-based approach, but it is unclear how the two may compare in terms of
engineering tradeoffs.
Hind et al. [60] present a collection of pointer analysis algorithms. Among them, the most
relevant to this work is a flow-sensitive interprocedural pointer alias analysis. The authors
optimistically produce must information for pointers to single non-summary objects.
Emami et al. [39] present an approach that simultaneously calculates both must- and may-
point-to information for a C analysis. Their empirical results “show the existence of a sub-
stantial number of definite points-to relationships, which forms very valuable information”—
much in line with our own experience.
The analysis of [33] is essentially a flow-sensitive may-point-to analysis that performs strong
updates, as it maps access paths to heap objects (abstracted by their allocation sites). The
approach uses a flow-insensitive may-point-to analysis to bootstrap the main analysis. How-
ever, it provides no definite knowledge of any sort, since the aim is to increase the precision
of the may-analysis. For instance, even if an access path points to a single heap object,
according to the De and D’Souza analysis, there is no must point-to information derived,
since this object could be a summary object (i.e., one that abstracts many objects allocated
at the same allocation site). To reason about such cases, other approaches, such as the
more expensive shape analysis algorithms [132], additionally maintain summary information
per heap object. In this way, they allow must point-to edges to exist only if the target is
definitely not a summary node.
Must- information is often computed in conjunction with a client analysis. One of the best
examples is the typestate verification of Fink et al. [45], which demonstrates the value of a
must-analysis and the techniques that enable it.
An approach for integrating must point-to reasoning in an analysis is to propagate such
information only at instructions where we know that the given heap allocation target still
refers to the last object allocated at that site [2]. Thus, an execution path that may create
another object at the same site (such as when reaching the end of the loop) would invalidate
any previous must-point-to facts (i.e., it will stop them from propagating any further).
Generally, must-analyses can vary greatly in sophistication and can be employed in an array
of different combinations with may-analyses. The analysis of Balakrishnan and Reps [7],
which introduces the recency abstraction, distinguishes between the most recently allocated
object at an allocation site (a concrete object, allowing strong updates) and earlier-allocated
objects (represented as a summary node). The analysis additionally keeps information on the
size of the set of objects represented by a summary node. At the extreme, one can find full-
blown shape analysis approaches, such as that of Sagiv et al. [132], which explicitly maintains
must- and may- information simultaneously, by means of three-valued truth values, in full
detail up to predicate abstraction: a relationship can definitely hold (“must”), definitely
not hold (“must not”, i.e., negation of “may”), or possibly hold (“may”). Summary and
concrete nodes are again used to represent knowledge, albeit in full detail, as captured by
arbitrary predicates whose value is maintained across program statements, at the cost of a
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super-exponential, worst-case complexity.
Jagannathan et al. [67] present an algorithm for must-alias analysis of functional languages.
The algorithm adapts must-alias insights to the setting of captured variables in closures.
For instance, must-alias information for non-summary objects permits strong updates, which
the authors find to improve analysis precision. We employ must-alias analysis results quite
similarly in applications of our model analysis.

Data Structures

Our optimized data structure is (partly) based on the observation that must-alias sets are
equivalence classes. This is not the first time that a data structure that efficiently implements
equivalence classes has been used to speed up pointer analysis. Most notably, a Steensgaard-
style (or unification-based) [153] analysis computes may-point-to sets that are equivalence
classes. This means that points-to sets are disjoint—if two points-to sets are found to possibly
overlap, they get unified. This loses precision (relative to a standard subset-based points-to
analysis) but enables the algorithm to use union-find trees for a very efficient representation.
Another optimized data structure often used in pointer analysis is the constraint graph: a
graph with nodes denoting pointer variables and an edge between nodes p and q denoting
flow (e.g., a direct assignment) from variable p to variable q. Online cycle elimination by
Fändrich et al. [41] detects cycles in the constraint graph and collapses all nodes in a cycle
into a representative node, since such nodes will have identical points-to information. The
technique of Nasre [109] extends such constraint graph reasoning based on the observation
that if two nodes have the same dominator in the constraint graph, then they are clones: the
values flowing to them are (only) those of the dominator node. Several other constraint graph
optimizations are applied off-line (i.e., before the points-to analysis runs). Prime examples of
such techniques are Rountev and Chandra’s [131] and Hardekopf and Lin’s [55]. (Hardekopf
and Lin have also applied similar ideas in a hybrid online/offline setting [57].) Both of these
techniques perform an off-line detection of equivalent points-to sets and use this knowledge
to eliminate redundant work in subsequent points-to computations. Our data structure can
be seen as somewhat analogous to constraint-graph techniques, in the sense that we do not
compute the flow of objects or the fully expanded set of all possible alias pairs. Instead, we
compute the “wiring” (i.e., the alias relationships, locally, that the program induces) and
keep the alias information in condensed form, until it needs to be queried by a client analysis.
Another conceptual relative of our data structure is the model presented by Madhavan et al.
[99] for modular may-analyses. That model is similar in that it invents abstract nodes for
heap objects that resemble ours (without the equivalence-class nature). The Madhavan et
al. approach aims to achieve modular reasoning, i.e., to model the heap effects of a method
without knowing its calling environment. To do so, the approach creates abstract nodes that
represent concepts such as “whichever object variable x may point to”. Our data structure
has nodes with a similar meaning, however we also take advantage of the “must” nature of
the analysis to merge nodes, every time the same access path can reach both.
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8.4 Defensive Analysis

There is certainly past work that attempt to ensure a sound whole-program analysis, but
none matches the generality and applicability of our approach. We selectively discuss repre-
sentative approaches.
The standard past approach to soundness for a careful static analysis has been to “bail out”:
the analysis detects whether there are program features that it does not handle soundly,
and issues warnings, or refuses to produce answers. This is a common pattern in abstract-
interpretation [29] analyses, such as Astrée [35], which have traditionally emphasized sound
handling of conventional language features. However, this is far from a solution to the
problem of being sound for opaque code: refusing to handle the vast majority of realistic
programs can be argued to be sound, but is not usefully so. In contrast, our work handles all
realistic programs, but returns partial (but sound) results, i.e., produces non-empty points-
to sets for a subset of the variables. It is an experimental question to determine whether
this subset is usefully large, as we do in our evaluation.
Hirzel et al. [61, 62] use an online pointer analysis to deal with reflection and dynamic loading
by monitoring their run-time occurrence, recording their results, and running the analysis
again, incrementally. However, this is hardly a static analysis and its cost is prohibitive for
precise (context-sensitive) analyses, if applied to all reflection actions.
Lattner et al. [80] offer an algorithm that can apply to incomplete programs, but it assumes
that the linker can know all callers (i.e., there is no reflection—the analysis is for C/C++) and
the approach is closely tied to a specific flow-insensitive, unification-based analysis logic [153],
necessary for simultaneously computing inter-related points-to, may-alias, and may-escape
information.
Sreedhar et al. [149] present the only past approach to explicitly target dynamic class
loading, although only for a specific client analysis (call specialization). Still, that work ends
up making many statically unsound assumptions (requiring, at the very least, programmer
intervention), illustrating well the difficulty of the problem, if not addressed defensively.
The approach assumes that only the public API of a “closed world” is callable, thus ignoring
many uses of reflection. (With reflection, any method is callable from unknown code, and
any field is accessible.) It “[does] not address the Java features of reloading and the Java
Native Interface”. It “optimistically assumes” that “[the extant state of statically known
objects] remains unchanged when they become reachable from static reference variables”.
It is not clear whether the technique is conservative relative to adversarial native code (in
system libraries, since the JNI is ignored). Finally, the approach assumes the existence of a
sound may-point-to analysis, even though none exists in practice!
Traditional conservative call-graph construction (Class Hierarchy Analysis (CHA) [34] or
Rapid Type Analysis (RTA) [6]) is unsound. Such algorithms explore the entire class hier-
archy for matching (overriding) methods and consider all of them to be potential virtual
call targets. However, even this is not sufficient for a sound static analysis of opaque code:
classes can be generated and loaded dynamically during program execution. CHA cannot
find target methods that do not even exist statically, yet modeling them is precisely what
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is needed for soundness in real-world conditions. For instance, Java applications, especially
in the enterprise (server-side) space, employ dynamic loading heavily, and patterns such as
dynamic proxies have been standardized and used widely since the early Java days.
Furthermore, such heuristic “best-effort” over-approximation is detrimental to analysis pre-
cision and performance. CHA is an example of a loose over-approximation in an effort to
capture most dynamic behaviors. (Similar loose over-approximations have been proposed,
for instance, for reflection analysis [145].) Loose over-approximations compute many more
possible targets than those that realistically arise. This yields vast points-to sets that render
the analysis heavyweight and useless due to imprecision. (Avoiding such costs is exactly
why past analyses have often opted for glaringly unsound handling of opaque code features.)
Our lazy representation of “don’t know”/”cannot bound” values as empty sets addresses the
problem, by keeping all points-to sets compact.
The conventional handling of reflection in may-point-to analysis algorithms for Java [44, 86,
89, 92, 93, 145] is unsound, instead relying on a “best-effort” approach. Such past analyses
attempt to statically model the result of reflection operations, e.g., by computing a superset
of the strings that can be used as arguments to a Class.forName operation (which accepts
a name string and returns a reflection object representing the class with that name). The
analyses are unsound when faced with a completely unknown string: instead of assuming
that any class object can be returned, the analysis assumes that none can. The reason
is that over-approximation (assuming any object is returned) would be detrimental to the
analysis performance and precision. Even with an unsound approach, current algorithms
are heavily burdened by the use of reflection analysis. For instance, the documentation
of the Wala library directly blames reflection analysis for scalability shortcomings [44],1
and enabling reflection on the Doop framework slows it down by an order of magnitude
on standard benchmarks [145]. Furthermore, none of these approaches attempt to model
dynamic loading—a ubiquitous feature in Java enterprise applications.

8.5 General Directions in Program Analysis

Finally, in this section, we extend our focus on the broader area of (static) program analysis
and automatic program understanding. We touch upon various methodologies that have
been introduced in past literature aiming to tackle more or less similar issues to the ones
previously discussed.

8.5.1 Control-Flow Analysis (k-CFA)

The term control-flow analysis (CFA) commonly describes an algorithm incorporating both
data-flow and control-flow reasoning, and more specifically, in which data-flow depends on

1The Wala documentation is explicit: “Reflection usage and the size of modern libraries/frameworks
make it very difficult to scale flow-insensitive points-to analysis to modern Java programs. For example,
with default settings, Wala’s pointer analyses cannot handle any program linked against the Java 6 standard
libraries, due to extensive reflection in the libraries.” [44]
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control-flow, and at the same time, control-flow depends on data-flow. In the setup of our
work, points-to reasoning plays the part of data-flow and call-graph reasoning plays the part
of control-flow. But, control-flow analysis is not strictly confined to the setting of pointer
analysis in object-oriented languages. It can also apply to functional languages in a similar
problem known as flow analysis—in which variables may a value flow to? Both settings
introduce a degree of complexity due to higher-order features; functional languages have
first-class functions and object-oriented languages have dynamic dispatch.
The origin of k-CFA is found in Shivers’s dissertation [140], and was developed to solve the
higher-order control-flow problem in λ-calculus-based languages. Consequently, it applies
both in functional languages that are explicitly vulnerable to the issue because closures are
passed around as first-class values, and in object-oriented languages where the issue is more
implicit in method invocations being resolved dynamically.
k-CFA is a well-known family of control-flow analysis algorithms, widely recognized in both
communities that popularized the idea of context-sensitive flow analysis. Although, in the
setting of object-oriented languages, k-CFA is often made synonymous to “context-sensitive-
to-depth-k” it is in fact an algorithm that incorporates context sensitivity along with several
other design decisions. Nevertheless, informally, k-CFA commonly refers to a k-call-site-
sensitive analysis with a k-context-sensitive heap.

8.5.2 CFL Reachability Formulation

In previous chapters we either formulated pointer analysis algorithms directly as Datalog
rules, or in the case of defensive analysis (Chapter 7) as inference rules that can be trans-
lated to Datalog rules in a straightforward fashion. This minimalistic approach allows one to
better reason about the way that language features interact with each other when designing
an analysis algorithm, without the burden of taking implementation details into account.
Additionally, such formulation can easily offer time and space complexity bounds for the
analysis under development as well as termination guarantees for the resulting algorithm.
Furthermore, as an added bonus, the Datalog specification is quite close to the actual im-
plementation of the algorithm in a Datalog engine.
Several past pointer analysis algorithms (as well as other related analyses) have been formu-
lated as a context-free language (CFL) reachability problem [119] that can later be translated
into Datalog rules. The core idea is that one encodes an input program as a labeled graph,
and a specific analysis as a context-free grammar, G. The relation being computed by the
analysis (e.g., aliasing information) holds for two nodes of the graph iff there exists a path
from one node to the other, such that concatenating the labels on the edges along that path
gives a string that belongs to the language L(G) defined by the aforementioned grammar.
In more detail, nodes in the input graph represent program elements such as variables,
methods, types, statements, and so on. Edges represent relations between such nodes. For
instance, an edge e(s, t) may represent a local assignment statement for the variables encoded
in graph nodes s and t. Other common edge encodings include field accesses (load/stores),
method invocations, pointer dereferences, etc. The exact choice of domains depends on the
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actual analysis that is being designed each time. In order to encode many different input
relations simultaneously on the graph, different kinds of edges can be employed. For a given
analysis, a context-free grammar G encodes the desired computed attributes as non-terminal
symbols, and supplies production rules that express how they relate to the simpler relations
represented by graph edges—and terminals in the grammar. The CFL reachability solution
in then commonly computed using a dynamic programming algorithm.
The first application of CFL reachability in program analysis intended to solve various in-
terprocedural dataflow-analysis problems [104, 124], but since then is has been used in a
wide range of problems, such as: (1) program slicing [125] (more on that later), (2) shape
analysis [121], (3) the computation of points-to relations [95, 120, 136, 150, 151, 166], (4) the
demand-driven computation of may-alias pairs in a C-like language [170], (5) Andersen-style
pointer analysis for Java [151].
As previously mentioned, any CFL reachability problem can be converted to a Datalog
program [120], but not the other way around. In that sense, CFL reachability implicitly
corresponds to a restricted subset of Datalog programs, often called chain programs. As a
consequence, the core advantage of CFL reachability is that it describes Datalog programs
that allow for more efficient implementations. In this setting, Datalog relations represent
labeled edges in the graph. For instance, the fact P(X, Y) encodes that node X and node Y
are connected via an edge labeled P. A chain program consists of rules of the following form:

P(X,␣Y)␣←␣Q0(X,␣Z1),␣Q1(Z1,␣Z2),␣...,␣Qk(Zk,␣Y).

The corresponding grammar G provides production rules as the following:

P␣→␣Q0␣Q1␣...␣Qk

A more concrete example, related to pointer analysis, is given in the following production
rule that describes how information (i.e., abstract objects) flow from the point of allocation,
through various assignments, to reach a program expression (e.g., variable).

FlowsTo␣→␣Alloc␣(␣Assign␣)␣*

The graph in Figure 8.1 encodes a small code snippet identified by the previous production
rule.
Initially, an abstract object obj is allocated to variable x. Then, x is assigned to y and y is
assigned to z. Subsequently, an indirect flow is inferred from object obj to variable z.

Dyck-CFL Reachability. A more restrictive variant is that of Dyck-CFL reachability.
Restrictions on the underlying context-free grammar result in a Dyck language, i.e., one
that generates balanced-parentheses expressions. This restrictive approach still suffices for
certain simple pointer analysis algorithms and at the same time it enables very aggressive
performance optimizations [168, 169].
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Alloc Assign Assign

FlowsTo

obj x y z

Figure 8.1: Example of a CFL Reachability Graph.

Figure 8.2 gives a simple example of a graph corresponding to a Dyck grammar. An opening
parenthesis encodes a field store, and a closing one encodes a field load. In both cases, the
field being accessed is used as subscript to differentiate different fields.

Assign

FlowsTo

x1

x2

y1 y2

z2

z1

FlowsTo

(f )f

(g )g

Figure 8.2: Example of a Dyck-CFL Reachability Graph.

The field differentiation of parentheses avoids erroneous inferences, such as the value of
x2 flowing into z1. The corresponding Dyck grammar includes productions rules as the
following:

FlowsTo␣→␣Assign␣|␣(f␣FlowsTo␣)f␣|␣(g␣FlowsTo␣)g␣|␣...

8.5.3 Probabilistic Pointer Analysis

As previously mentioned, pointer analysis has evolved into a critical tool for compiler analysis
and optimizations. Many sophisticated optimizations enforced by a compiler need some kind
of proof that certain properties hold in order to guarantee that the compilation process does
not introduce errors into the program.
To that end, one approach is to either use some variation of a must analysis (as in Chapters 5
and 6), or a sound-may analysis (as in Chapter 7) and look at the complement of the result
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(i.e, if a sound-may analysis claims a set of behaviors may apply to a certain point in the
program, then the compiler is certain that no other behavior may arise).
On the other hand, compilers in recent years have another potential direction to follow; that
of speculative optimizations. A speculative optimization typically involves a code transforma-
tion that allows ambiguous memory references to be scheduled in a potentially unsafe order,
and requires a recovery mechanism to ensure program correctness. Nowadays, speculative
optimizations are widely used in the compilation pipeline, which allows compilers to employ
the results of a may analysis as well. The very nature of those optimizations means that
they are accompanied with safeguards for when applying them was not the correct choice.
Thus, a compiler can aggressively exploit information from an analysis that is not always
guaranteed to hold.
More aggressive, hardware-supported techniques, such as thread-level speculations [54, 76,
130] and transactional programming [53, 54] apply speculative parallelization of sequential
programs by utilizing specialized hardware. The downside is that many of these optimiza-
tions rely on extensive data dependence profiling in order to decide when to speculate. Such
information is expensive to acquire or potentially unavailable.
This has led to the family of probabilistic pointer analysis algorithms [21, 30, 116] that
aim to compute pointer information accompanied with some amount of likelihood. These
algorithms provide an alternative approach to profiling. Since they are an instance of a
static analysis, they can be employed at compile-time to alleviate the aforementioned lack
of profile information.
A probabilistic pointer analysis algorithms statically predict the probability of each points-
to relation at each program point. Such probabilities are especially useful to a compiler
when applying some kind of speculative optimization. Beside more traditional techniques
(for instance, static or dynamic profiling), various statistics concepts and stochastic models
(e.g., sparse transformation matrices, Discrete-Time Markov chains, etc.) from other fields
have been imported into the domain of static analysis for this purpose.

8.5.4 Recency Abstraction

Any static analysis algorithm will construct an abstraction model of the program’s memory,
with a single abstract heap object potentially encoding multiple concrete (runtime) objects.
The most common approach is (as already discussed in previous chapters) to use each allo-
cation instruction to encode a single abstract object in memory.
A different approach is offered by Balakrishnan and Reps [7] in their recency-abstraction
technique. In that approach, each allocation site encodes two abstract memory objects:
(1) one that represents the most-recently-allocated object (for that allocation site), and
(2) one that summarizes all other, previously allocated objects. An analysis can exploit
this most-recently-allocated object, since it represents a single concrete runtime object, and
apply “strong updates” reasoning. This proves essential in improving precision and scalabil-
ity on a flow-sensitive analysis.
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8.5.5 Separation Logic (& Hoare Logic)

Pointer analysis ultimately constructs a model of the heap, by computing all the heap objects
that each program expression may point to during execution. But, this is by no means
the only approach that analyzes the heap. Other approaches, that stem from the field of
separation logic [18, 66, 111, 112, 127, 128], have been used to reason about the heap and
produce proofs regarding pointer safety. Separation logic, in turn, extends the theory of
Hoare logic [5].
Hoare logic provides a formal system to reason about program correctness, by encoding a
language’s semantics (and therefore the program’s as well) in Hoare triples. A Hoare triple
has the form {P} C {Q}, and encodes that whenever an assertion P holds, before executing
command C, then assertion Q is quaranteed to hold afterwards—if C terminates. The P
and Q assertions express conditions on local variables—written in standard mathematical
notation alongside some form of calculus (e.g., first-order logic).
Hoare logic provides two variants of operation: (1) a forward approach in which one starts
from a precondition and generates formulas in order to prove a postcondition, (2) and a
backwards approach in which the opposite direction is followed (i.e., start from a postcondi-
tion and prove a precondition). In the general case, regardless of which variant is employed,
the process cannot result in a fully automated reasoning and building a general proof may
require human guidance to some extent.
Separation logic builds upon Hoare logic by introducing additional operators in the syntax of
assertions that focus on local reasoning. For instance, the separating conjunction operator,
P ∗ Q, asserts that conditions P and Q hold for separate parts of memory, and thus can be
used on program proofs to enable modular reasoning. Another interesting operator is that
of separating implication, P −∗ Q, which asserts that if the current heap is extended with
a part where P holds, then Q holds in the extended heap. It is noteworthy that, despite
all of its extensions, separation logic is not more “powerful” than Hoare logic—all that is
provable in separation logic is also provable in Hoare logic. The extensions serve to simplify
the specifications and proofs.
For example, the condition (x 7→ y ∗ y 7→ x) asserts that x points to y and separately
y points to x. This formula describes precisely two allocated memory parts—denoted by x
and y—i.e., it is guaranteed that the pointers do not alias.
A simple example of a separation logic rule, given some resource r, is the following:

{ isOpen(r) } closeRes(r) { isClosed(r) }
This rule describes a specification for a method closeRes that given a resource handler r,
closes that resource. Now, given a precondition {isOpen(r1) ∗ isOpen(r2)} one can infer
the following formula:

{ isOpen(r1) ∗ isOpen(r2) } closeRes(r1) { isClosed(r1) ∗ isOpen(r2) }
This highlights how separating conjunction allows one to reason about mutations in memory,
mimicking the actual updates happening in RAM during execution. Such reasoning leads to
logical proofs about imperative programs that match computational intuition.
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The previous formula expansion is based on a general pattern in separation logic; a frame
rule that allows one to go from smaller to bigger specifications. It is named after the classic
frame problem found in artificial intelligence. Here frame describes a part of the program
state that remains unchanged after the semantics of command C have been applied.

{P} C {Q}
{P ∗ frame} C {Q ∗ frame}

The frame rule is key to local reasoning in separation logic; reasoning and specifications
should concentrate on the resources that are affected by a given command, without men-
tioning what remains unchanged.

Bi-abduction. In classical logic, entailment statements, such as A ` G, denote that A
implies G. Subsequently, the notion of abduction extends such statements in order to infer
some “missing” assumption ?M , given an assumption A and a goal G:

A ∧ ?M ` G

This is similarly expressed in separation logic via the separating conjunction operator, which
also partitions the premises:

A ∗ ?M ` G

Finally, this leads to the more general problem of bi-abduction, in which a theorem prover
tries to infer “missing” information in both parts of the entailment statement:

A ∗ ?Antiframe ` G ∗ ?Frame

The notion of bi-abduction has allowed analyses of large programs to circumvent the fact
that, normally, reasoning is an untractable problem. Bi-abduction enables one to break a
large analysis of a whole program in small independent analyses of its parts (e.g., methods).
This allows a theorem prover to scale independently of the size of the analyzed code. This
approach has the added benefit of making the analysis incremental; if some code changes in
the future, the analysis doesn’t need to re-analyze the unchanged part of the code, but can
instead reuse what was previously inferred.
As an illustrating example, assume that a method has the following generic specification:

{P} meth() {Q}

Additionally, assume that CallingState represents what was computed to hold before the
method invocation. In order to utilize the method specification, the following implication
has to hold as well:

CallingState ` P

Bi-abduction is used at method call sites for two reasons: to discover missing state that is
needed for the above implication to hold (the antiframe), as well as state that the call leaves
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unchanged (the frame). For instance, assume that the following two calling statements are
under examination:

closeRes(r1) ; closeRes(r2)

Considering the first call, one could guess (or have prior domain-specific knowledge) that
a precondition including { isOpen(r1) } could be a reasonable starting point. Thus, bi-
abduction has to answer the following query (ε represents the empty state, i.e., presume
nothing):

ε ∗ ?Antiframe ` isOpen(r1) ∗ ?Frame

This is trivially solved by picking (?Antiframe = isOpen(r1)) and (?Frame = ε). After
applying common logical rules, the formula is converted to the following trivial implication:

isOpen(r1) ` isOpen(r1)

The formula satisfies the requirement to correctly make the method call, which leads to:

{ isOpen(r1) } closeRes(r1) { isClosed(r1) } closeRes(r2)

The condition isClosed(r1) doesn’t have enough information to satisfy the second call to
closeRes, so following similar reasoning as before, the next bi-abduction query is the fol-
lowing:

isClosed(r1) ∗ ?Antiframe ` isOpen(r2) ∗ ?Frame

It is simple to find a solution satisfying the previous query by picking (?Antiframe =
isOpen(r2)) and (?Frame = isClosed(r1)). This leads to the updated formula:

{ isOpen(r1) ∗ isOpen(r2) } closeRes(r1) { isClosed(r1) ∗ isOpen(r2) } closeRes(r2)

which leads to the final answer, by updating the postcondition of the second call as well:

{ isOpen(r1) ∗ isOpen(r2) } closeRes(r1) { isClosed(r1) ∗ isOpen(r2) }

closeRes(r2) { isClosed(r1) ∗ isClosed(r2) }

Monoidics & Facebook Infer. It is noteworthy to mention here a quite successful tool
related to separation logic. Infer, or also known as Facebook Infer [20], is as static analysis
tool initially developed by Monoidics in 2009 (by Calcagno, Distefano and O’Hearn), and
later aquired by Facebook in 2013. In 2015 the code was open-sourced and has since been
widely used by various groups.
Infer has its roots in the theory of separation logic and builds upon previous successful tools
in academic work on automatic program verification (e.g., Smallfoot and SpaceInvader).
Written in OCaml, it offers support for multiple programming languages (Java, C, C++,
and Objective-C). It is deployed in Facebook to analyze its Android and iOS applications.
Facebook claims that Infer has helped developers discover hundreds of bugs per month.
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8.5.6 Program Verification

The ability to formally prove programs correct is a desirable element of any programming
language, since this leads to more reliable programs [14, 42]. The downside is that, in many
cases proving a program correct is a tedious and impractical endeavor, but nevertheless, it
can be quite valuable in reasoning about the semantics of a given program. Throughout the
years, many theories and tools have been introduced in order to tackle this issue.
Hoare logic, as well as separation logic, are such formal system for reasoning about a pro-
gram’s correctness. Alongside a set of axioms or rules (such as the frame rule), one provides
semantics for every program element (e.g., assignments, function calls, etc.) and then pro-
ceeds to prove the desired properties. Other interesting formal systems include Propositional
Calculus, First-Order Logic and solvers for the Boolean Satisfiability Problem (SAT Solvers).
Proposed systems and tools fall in one of two big subcategories. Either they aim to provide
fully automated theorem proving (also known as ATP or automatic deduction), or they allow
for interaction with a human during the process of formulating a formal proof (these systems
are referred to as proof assistants). Since, proofs generated by automated theorem provers
are typically large, the problem of compressing them is crucial and various techniques have
been proposed in order to make a prover’s output smaller and consequently more easily
understandable and verifiable.

SAT Solvers (& SMT Solvers). The Boolean satisfiability problem (or abbreviated as
SAT) revolves around determining if there exists an interpretation that satisfies a given
Boolean formula (i.e., specific Boolean values to each variable in the formula, such that the
formula is evaluate to true). For instance, the formula (a ∧ ¬b) is satisfiable (with the
solution being a = true, b = false), whereas the formula (a ∧ ¬a) is not.
SAT was the first problem to be proven to be NP-complete, and thus, there is no known
algorithm that efficiently solves any SAT problem instance. Nevertheless, as of 2007, heuristic
SAT-algorithms are able to solve problem instances involving tens of thousands of variables
and formulas consisting of millions of symbols, which is sufficient for many practical SAT
problems from, e.g., artificial intelligence, circuit design, and automatic theorem proving.
Specifically, in the domain of automatic theorem proving, it has been shown that problems
can often be reduced to Boolean satisfiability formulas, and hence a SAT solver can be
applied to search for a solution. Recent advances have made this approach quite feasible in
practice [48, 59, 161].
The general approach to modeling a problem for a SAT solver is as follows: (1) define a
finite set of possibilities, called states, (2) model states using propositional variables, (3) use
propositional formulas to describe legan and illegal states, and (4) construct a propositional
formula describing the desired state. The process of SAT solving takes place, and if the
formula is satisfiable, then the satisfying assignment also gives the desired state, or if the
formula is unsatisfiable, then the desired state does not exist.
Finally, a closely related notion is that of satisfiability modulo theories solvers [85, 126] (or
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abbreviated as SMT solvers). Satisfiability modulo theories generalizes Boolean satisfia-
bility (SAT) by adding a combinations of background theories such as: equality reasoning,
arithmetic, fixed-size bit-vectors, arrays, uninterpreted functions, and other useful first-order
theories. SMT solvers are not any more powerful than SAT solvers. They will still run in
exponential time or be incomplete for the same problems in SAT. The advantage of SMT is
that many things that are obvious in an SMT solver can take a long time for an equivalent
SAT solver to rediscover. Any problem that is provable by a SAT solver is also provable by
an SMT solver. A highly successful instance of an SMT solver is Z3 [32], which is developed
by Microsoft Research.

Coq Proof Assistant. Another quite notable mention to a successful tool has to include
the Coq proof assistant [115] (named after its principal developer, Thierry Coquand). Coq
is an interactive proof assistant that was initially released in 1989. It provides a formal lan-
guage (called Gallina) to write mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive development of machine-checked proofs.
It enables one to express mathematical assertions, mechanically check proofs of those as-
sertions, assists in finding formal proofs, and finally, extract a certified program from the
constructive proof process of its formal specification.
Coq is based on the theory of the calculus of inductive constructions (a λ-calculus with a rich
type system), a derivative of the calculus of constructions. It is not an automated theorem
prover, but includes automatic theorem proving procedures.
Typical applications include the certification of properties of programs (e.g., the CompCert
compiler certification project, the Verified Software Toolchain for verification of C programs,
or the Iris framework for concurrent separation logic), the formalization of mathematics
(e.g., the full formalization of the Feit-Thompson theorem, or the Four color theorem), and
teaching.

8.5.7 Program Synthesis

Program synthesis is the task of automatically constructing a program in the underlying
programming language that satisfies the user intent expressed in the form of some high-level
specification. It differs from program verification, in that the program is to be constructed
rather than already existing. However, both fields make use of formal proof techniques,
and both show varied degree of automation. Specification in program synthesis are usually
expressed in a logical calculus.
In 1957, Alonzo Church, during the Summer Institute of Symbolic Logic at Cornell Univer-
sity tried to synthesize circuits from mathematical requirements. Eventually, researchers of
Artificial Intelligence in the 1960s elaborated on the concept of program synthesis to apply
it to symbolic AI research.
Since its inception, program synthesis has been considered the holy grail of Computer Sci-
ence. Pnueli considered it to be one of the most central problems in the theory of program-
ming [117]. Despite inherent challenges in the problem such as ambiguity of user intent and
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a typically enormous search space of programs, the field of program synthesis has developed
many different techniques that enable program synthesis in different real-life application
domains.
After the development of the first automated theorem provers, there was a lot of pioneering
work on deductive synthesis approaches [49, 102, 160]. The principle was to use a the-
orem prover to first construct a proof of a user-provided specification, and then use the
proof to extract the corresponding logical program. A different popular direction was that
of transformation-based synthesis [101], in which a high-level complete specification was
transformed repeatedly until the desired low-level program is acquired.
A common problem with approaches that assumed a complete formal specification turned
out to be that providing such a specification could be as complicated as writing the program
itself. This leads to new techniques based on inductive specifications such as input-output
examples, demonstrations, genetic programming, and more [75, 139, 146, 154]. The more
recent approaches allow a user to additionally provide a skeleton (grammar) of the space of
possible programs, in addition to a specification [3].
Program synthesis is now successfully applied in software engineering, biological discovery,
computer-aided education, end-user programming, and data cleaning. In the last decade,
several applications of synthesis in the field of programming by examples have been deployed
in mass-market industrial products. Popular synthesis frameworks include the Sketch
system [147], the Prose framework for FlashFill-like programming by examples [51], and
the Rosette virtual machine for solver-aided programming [156]. Potentially, one of the
biggest applications where programming synthesis is used nowadays is making computer
programming more accessible. Applications such as AutoProf, FlashFill, and Storyboard
Programming Tool allow students to write programs in more intuitive ways by manipulating
certain concepts directly without having to touch code.

8.5.8 Program Slicing

Program slicing [64, 96, 155, 162] is a technique for simplifying programs by focusing on
selected aspects of semantics. It refers to the computation of the set of program statements—
the program slice—that may affect the values at some point of interest—the slicing criterion
(e.g., the value of variable x at program point n). The slice is constructed by deleting the
parts of the program that are irrelevant to those values.
Program slicing can be used in program debugging to locate the source of errors more easily,
since it produces a minimal example of code that exhibits the same erroneous behavior as
the original program. Other applications include software maintenance, optimization, and
program analysis.
When discussing program slicing there are two dimensions of interest: a semantics one
and a syntactic one. The dimension of semantics describes what is to be preserved, and
three main paradigms are observed: (1) static slicing which preserves a program’s static
behavior, (2) dynamic slicing which preserves a program’s dynamic behavior, and finally,
(3) conditioned slicing which attempts to bridge the gap between the previous two.
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The dimension of syntax presents only two alternatives: either (1) syntax-observing slicing
(the norm in existing work) which preserves a program’s original syntax, merely removing ir-
relevant parts, or (2) amorphous slicing which is free to perform any syntactic transformation
as long as the semantics constraints are preserved.
Finally, given a slicing criterion, there are two possible forms of slice that can be produced:
either a backward one or a forward one. A backward slice contains the program’s statements
that can have some effect on the slicing criterion, whereas a forward one contains those
statements that are affected by the slicing criterion.
Slices constructed in static slicing tend to be rather large. This is particularly true for
well-constructed programs, where the computation of the value of each variable is highly
dependent upon the values of many other variables. Dynamic slicing exploits the fact that
some useful information might have been observed during some program execution. For
instance, it is reasonable to construct a slice that is based on certain values that the input
had when an error was observed. Dynamic slices are quite attractive, far simpler than the
ones produced by static slicing, and can more easily highlight bugs in the original program.
Nevertheless, static slices are still relevant in applications where the slice has to be sound
for every potential execution.
Therefore, it is apparent that static and dynamic slicing represent two extremes—either the
input is not taken into account (static approach) or the input is crucial on the process of
deciding the relevant program statements (dynamic approach). Conditioned slicing lies in
between; it takes into account information regarding the input without being so specific as
to have the precise values. For instance, a potential condition could be “variable x is greater
than y, and z is 42”. This is in contrast to a static approach that would entirely disregard
specific input values, or to a dynamic approach that would require precise values for all
variables of interest.

8.5.9 Dynamic Symbolic Execution

The notion of symbolic execution is quite old in computer science [31]. It provides a method-
ology of analyzing a program to determine which inputs cause the execution of various
program parts. An interpreter follows the control flow of a program, assuming symbolic
values for inputs rather than concrete, actual ones as a normal program execution would.
For instance, at an instruction that reads some input and assigns it to a variable x, symbolic
execution would assign some symbolic value such as λ. If later, variable y is assigned the
result of (x * 2), it would consequently have the symbolic value (λ * 2), and so on and
so forth. When dealing with branching and conditions, symbolic execution would proceed
along both branches, assuming each time the appropriate symbolic values. In our running
example, if a branch instruction had the condition (y == 10), symbolic execution would
follow both paths independently, each time accumulating the corresponding constraint—
i.e., (λ * 2 == 10) or (λ * 2 != 10), respectively. Subsequently, a constraint solver could
deduce that (λ == 5), in the case that the “if” branch had been followed.
There are various limitations that burden symbolic execution [36, 77, 97, 152]. These include,
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but are not limited to, the following:

• Path explosion is due to executing all feasible program paths; a number that grows
exponentially with an increase in program size and can even be infinite in cases of
unbounded loop iterations.

• The handling of memory aliasing, since such a property cannot always be accurately
computed in a static manner, and thus, symbolic execution cannot recognize that a
change to the value of one variable might affect the values of other variables as well.

• The treatment of arrays, since references such as A[i] can only be specified dynami-
cally, when the value for i has a concrete value. A compromise is to treat the entire
array as a single value (a technique also known as array smashing [13]).

• Environment interactions, given that programs interact with their environment in var-
ious ways (e.g., performing system calls, reading from a file or database, dealing with
threads) and modeling such interactions is challenging.

Dynamic symbolic execution [17, 47, 134, 135, 165] (also known as concolic execution—a
portmanteau of concrete and symbolic) is a powerful automated testing technique that is
based on a hybrid approach; it keeps track of the program state both concretely, as a dynamic
analysis would, and symbolically, as a static analysis would. In layman’s terms, it boils down
to running a symbolic execution alongside a concrete one. This way, the symbolic execution
can benefit from the concrete path to avoid the explosion on the number of possible paths.
Only one path is considered at a given time, but the constraints on input are accumulated
along the path and then inverted to produce new inputs, aiming to reach new code parts.
The goal of dynamic symbolic execution is to systematically generate non-equivalent inputs
(i.e., inputs that lead the program’s execution along different paths).
Essentially, a dynamic symbolic execution algorithm has the following steps:

1. Choose a particular set of variables to be input variables. These will be treated as
symbolic variables, whereas all others will be treated as having concrete values.

2. Log any operation that may affect a symbolic variable’s value or a path condition.
3. Generate an arbitrary input to jump-start the process.
4. Concretely execute the program and generate a set of symbolic constraints and path

conditions.
5. Negate the last path condition that is not already negated, in order to visit a new

execution path.
6. Invoke an automated satisfiability solver (SAT or SMT) on the new set of path condi-

tions to generate a new input.
7. Re-execute the program (step 4) and repeat the process.

The steps above reveal a few complications in the whole process. Namely, first that the
algorithm performs a depth-first search over the implicit tree of possible execution paths. In
practice this path tree will be very large, or maybe even infinite. To prevent spending too
much time on one small part of the program, the search may be limited by depth. Second,
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both symbolic execution and automated theorem provers have limitations on the classes of
constraints they can represent and solve. Any time a constraint that is outside the reach
of the given solver is reached, the symbolic execution may substitute the current concrete
value of one of the variable in order to simplify the problem.
The area of dynamic symbolic execution has led to the development of many successful tools,
such as SAGE and Pex by Microsoft, the KLEE [134, 135] and S2E (open-source) tools which
are widely used in many companies including NVIDIA and IBM, Cloud9 by EPFL, Symbolic
PathFinder (SPF) by NASA [114], and more.
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9. CONCLUSIONS AND FUTURE WORK

Everything’s got to end sometime. Oth-
erwise nothing would ever get started.

The 11th Doctor - Doctor Who

In this final chapter, we assess our initial thesis and conclude, while also considering inter-
esting directions for future work.
The first part of our dissertation thesis states that it is possible to obtain precise yet scalable
static pointer analysis algorithms by carefully employing different policies for different parts
of the program.
In Chapter 3, we presented an analysis that combines call-site sensitivity and object sensitiv-
ity in a non-trivial manner. Instead of keeping both context flavors at all times, we alter an
object-sensitive analysis so that it uses call-site sensitive elements in places where it would
be more beneficial (e.g., in handling static call invocations). We show that this approach
not only bears the precision benefits of combining the two flavors, but also avoids incurring
the accumulated cost. For instance, in our experiments we observed an average speedup of
1.53x alongside a more precise analysis. Additionally, we provide a concise way to formulate
variations of both a uniform and a selective approach, in order to experiment with different
flavor combinations and context depths.
In Chapter 4, introspective analysis examines another approach to a precise and scalable
analysis. Our two-phase algorithm allows for a cheap, yet imprecise, analysis to run as
a first step in order to gather crucial metrics that gauge the potential effect that a more
precise context might have on various program elements (e.g., object allocations or method
invocations). Subsequently, a more precise analysis is applied only on those elements that
were deemed to benefit from the additional precision, without at the same time imposing a
significant penalty on performance.
We employ various heuristics for deciding which program elements are worth the extra effort
of a more precise handling, and show experimentally that although it is not a “first line of
defense” kind of analysis, introspective analysis can be a valuable “if all else fails” alternative.
Users can “dial-in” scalability (by parametrizing the heuristics that decide which elements
are to be handled more accurately) to the exact level required, without having to sacrifice
a significant fraction of precision. Previously hopeless analyses now become feasible. For
instance, a variation of our analysis scales to all but one benchmark in under 20 minutes,
while keeping about 2/3 of the precision gains that a more precise, yet “heavy” analysis
would achieve.
The second part of our thesis stipulates that analyses can be designed to offer novel, strong
guarantees on the soundness of results, but only for specific parts of the program.
In Chapters 5 and 6, we model an instance of a must-alias analysis, a conservative analysis
that under-approximates results but can guarantee that what is reported is actually correct.
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The nature of the analysis makes it valuable for compiler optimizations, program under-
standing, the improvement of bug detectors, and even as an internal component in more
sophisticated analyses.
The analysis we present is minimal, yet it models core features in a handful of declarative
rules. This makes reasoning about the analysis semantics less arduous. For instance, this
partially led to the insights that called for the introduction of a specialized data structure in
Chapter 6. Additionally, the analysis highlights a non-conventional use of context; instead
of a beneficial add-on, it is a crucial part of the analysis that guarantees that interprocedural
propagation of information remains valid. Another benefit stemming from our analysis is
its incrementality. Soundness is not compromised if only a portion of the program-under-
analysis or its libraries are available; only completeness. The availability of more code simply
implies more inferences for our analysis. Precomputed facts are guaranteed to always hold,
independently of what new parts of the code are analyzed in the future.
Following our insights from Chapter 5, we introduce a specialized data structure that exploits
the fact that must-alias sets are equivalence classes, and as such there is no need to explicitly
compute each alias pair. This “laziness” in computation is further exploited to implicitly
encode the extension of alias information to longer access paths. Our data structure is in
the form of a alias graph that abstractly represents local variables and the heap. Nodes
(abstract objects) are alias classes, edges are field-points-to relationships.
In a complementary fashion, we describe all the algorithms on our alias graph required
by a must-alias analysis. We implemented our data structure both imperatively, in Java,
with destructive updates, and purely functionally, in Datalog. Both implementations yield
large performance improvements compared to an explicit representation of all alias pairs.
The imperative version achieves a speedup of up to two orders of magnitude, with the
declarative implementation nearly matching it in most cases. As a result, the running time of
a realistic must-alias analysis becomes small—a few tens of seconds for large benchmarks
and the full Java library.
Finally, in Chapter 7, we conclude our contributions with another conservative and fully
sound may-analysis. Soundness in our defensive analysis means that it has to (correctly)
over-approximate all concrete executions. This proves quite challenging in practice due to
code that cannot be analyzed (e.g., dynamically generated code, or native code) or dynamic
language features (e.g., reflection).
The analysis employs a different logical approach from past analyses, in order to successfully
distinguish “safe” inferences (i.e., certain to not be affected by unknown code, and hence
correct). In essence, our analysis produces inferences only when these are guaranteed to hold
because of existing code, and cannot possibly be violated by other, unknown code. In our
effort to implement defensive analysis in a realistic package, we found that laziness is an
essential feature—the analysis cannot scale without it for real-world programs.
Experiments show that the analysis is efficient, leveraging its lazy representation of points-
to sets. As a result, it can be made precise, beyond the limits of standard whole-program
points-to analyses (e.g., achieving a 5-call-site-sensitive and flow-sensitive analysis). The
analysis is also modular since it can be applied to any subset of the program. Although
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quite defensive, the analysis yields useful coverage over large Java benchmarks. In our
experimental setup, the analysis computes guaranteed over-approximate points-to set for
34-74% of the local variables of a conventional unsound analysis. Similar effectiveness is
achieved for other metrics, again with actionable, guaranteed-sound outcomes.
To summarize, we advocate that modern, sophisticated, static pointer analyses need not
make a sacrifice over precision or scalability, to achieve the other. Both properties are
achievable with appropriate tuning and design choices, for different parts of the program.
Complementary, it is possible for analyses to compute results alongside with strong soundness
guarantees, again focusing at specific parts of the program. To conclude, a static pointer
analysis algorithm doesn’t have to use a one-size-fits-all handling of every language feature
and program point, but instead it is favorable to methodically differentiate its policies for
different parts of the code, towards different desired outcomes.

9.1 Future Work

Finally, we will discuss some interesting future directions to tackle existing limitations of our
approaches.

Hybrid-Context Sensitivity. Our approach in hybrid analysis showed that it is beneficial
to combine different kind of context flavors when dealing with different program elements.
Our work focused on the handling of static call invocations, and also only examined two
alternatives of contexts (in a given analysis). Future work can explore the existence of
other language features that would benefit from a different context, as well as the potential
variation of context depth itself. An example of an interesting program element that might
benefit from a different context is the handling of collections (e.g., lists, maps, sets, etc.) that
the Java library offers. Maybe an analysis can keep its context depth limited in “normal”
code, and push for higher precision (via allowing for more context depth) when analyzing
the code of a collection class.

Introspective Analysis. Future work in the context of our introspective analysis, first
includes the examination of more sophisticated and highly tuned heuristics. Our heuristics,
were good enough to gauge potential program elements that would benefit from a more
precise handling, but there is always room for improvement. Especially, in picking more
fined-tuned values for the parameters of each heuristic, one might examine an approach
in which the actual values depend on other metrics specific to the program at hand. For
instance, whether the program is heavy on reflection or the use of static call, etc. Another
potential direction to explore is whether a more sophisticated strategy in the refinement steps
is favorable. In our current implementation, the first step is a cheap and crude analysis, and
the second step is the fully-fledged precise analysis. Maybe a multi-staged approach that
slowly increases precision, while in interleaved steps re-evaluates which program elements
need more accurate handling, bears significant precision and scalability gains.
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Must-Alias Analysis. The main venue of exploration in our must-alias analysis is that
of expanding our minimal model. The presented model captures the core elements that
an analysis of this nature has to handle, but still misses many more language features.
Improvements towards that end will server in inferring more alias pairs, thus increasing the
analysis coverage. An additional direction, is that of modeling specific library code that
is too hard to manually analyze but could potentially be crucial in improving the analysis
reasoning. For example, such modeling might include important “low-level” methods such
as equals or clone that have clear and “safe” semantics.

Defensive Points-To Analysis. Finally, regarding our last contribution, future work
includes directions similar to those of our must-alias analysis. A potential modeling of
crucial methods, such as access to collections and core native functions could significantly
increase the coverage of the analysis. Those methods are hard to automatically analyze in a
sound manner, but have clear semantics offered by the language specification. Furthermore,
another future approach includes the modeling of a more refined concurrency model. The
simplified concurrency model we presented allowed us to describe the analysis in its purest
form, starting from a sound basis, with the potential of adding to it conservatively.
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