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Abstract

Context-sensitivity is the primary approach for adding more preci-
sion to a points-to analysis, while hopefully also maintaining scal-
ability. An oft-reported problem with context-sensitive analyses,
however, is that they are bi-modal: either the analysis is precise
enough that it manipulates only manageable sets of data, and thus
scales impressively well, or the analysis gets quickly derailed at the
first sign of imprecision and becomes orders-of-magnitude more
expensive than would be expected given the program’s size. There
is currently no approach that makes precise context-sensitive analy-
ses (of any flavor: call-site-, object-, or type-sensitive) scale across
the board at a level comparable to that of a context-insensitive anal-
ysis. To address this issue, we propose introspective analysis: a
technique for uniformly scaling context-sensitive analysis by elim-
inating its performance-detrimental behavior, at a small precision
expense. Introspective analysis consists of a common adaptivity
pattern: first perform a context-insensitive analysis, then use the
results to selectively refine (i.e., analyze context-sensitively) pro-
gram elements that will not cause explosion in the running time
or space. The technical challenge is to appropriately identify such
program elements. We show that a simple but principled approach
can be remarkably effective, achieving scalability (often with dra-
matic speedup) for benchmarks previously completely out-of-reach
for deep context-sensitive analyses.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
Analysis; D.3.4  [Programming Languages]: Processors—
Compilers

General Terms Algorithms, Languages, Performance

Keywords points-to  analysis;
sensitivity; type-sensitivity

context-sensitivity;  object-

1. Introduction

Points-to analysis is probably the most common whole-program
static analysis, and often serves as a substrate for a variety of high-
level program analysis tasks. Points-to analysis computes the set of
objects (abstracted as their allocation sites) that a program variable
may point to during runtime. The promise, as well as the challenge,
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of points-to analysis is to yield usefully precise information without
sacrificing scalability: the analysis inputs are large and the analysis
algorithms are typically quadratic or cubic, but try to maintain
near-linear behavior in practice, by exploiting program properties
and maintaining precision. Indeed precision and performance often
go hand-in-hand in a good points-to analysis algorithm: better
algorithms are often found to be both more precise and faster,
because smaller points-to sets lead to less work [14].

Context-sensitivity is a common way of pursuing precision and
scalability in points-to analysis. It consists of qualifying local vari-
ables and objects with context information: the analysis unifies in-
formation (e.g., “what objects this method argument can point to”)
over all possible executions that map to the same context value,
while separating executions that map to different contexts. In this
way, context-sensitivity attempts to avoid precision loss from merg-
ing the behavior of different dynamic program paths. Context-
sensitivity comes in many flavors, depending on the kind of context
information, such as call-site-sensitivity [22, 23], object-sensitivity
[19, 20], and type-sensitivity [24].

An oft-remarked fact about context-sensitivity, however, is that
even the best algorithms have a common failure mode when they
cannot maintain precision. Past literature reports that “the perfor-
mance of a [...] deep-context analysis is bimodal” [24]; “context-
sensitive analyses have been associated with very large numbers of
contexts” [15]; “algorithms completely hit a wall after a few iter-
ations, with the number of tuples exploding exponentially” [16].
Recent published results [12] fail to run a 2-object-sensitive analy-
sis in under 90mins for 2 of 10 DaCapo benchmarks, while 2 more
benchmarks take more than 1,000sec, although most other bench-
marks of similar or larger size get analyzed in under 200sec.

Thus, when context-sensitivity works, it works formidably, in
terms of both precision and performance. When it fails, however,
it fails miserably, quickly exploding in complexity. In contrast,
context-insensitive analyses uniformly scale well, for the same in-
puts. Figure 1 vividly demonstrates this phenomenon for the Da-
Capo benchmarks, analyzed with the Doop framework [2] under a
context-insensitive (insens) analysis and a 2-object-sensitive anal-
ysis with a context-sensitive heap (20bjH). (The chart truncates the
analysis time of the longest-running benchmarks. Two of them,
hsqldb and jython, timed out after 90mins on a 24GB machine,
and would not terminate even for much longer timeouts.) As can
be seen, context-insensitive analyses vary relatively little in per-
formance, while context-sensitivity often causes running time (and
memory use) to explode.

Faced with this unpredictability of context-sensitivity, a com-
mon reaction is to avoid it, favoring context-insensitive analy-
ses, and, consequently, missing significant precision benefits for
well-behaved programs. Even worse, for some applications, es-
chewing expensive context-sensitivity is not an option—a context-
insensitive analysis is just not good enough. Reports from indus-
try [4] and academic researchers [3] alike reiterate that precise
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Figure 1. Comparison of running times of context-insensitive
analysis vs. 2-object-sensitive with context-sensitive heap. The y-
axis is truncated to 1hr for readability.

context-sensitivity is essential for information-flow analysis, taint
analysis, and other security analyses.

We can ask ourselves, why does this scalability barrier arise?
The core problem is that, for some objects or methods, the points-
to information is imprecise enough that more context does not
help, while incurring a heavy overhead [24]. Consider a method
argument that was found to point to n objects by a less precise
analysis. Further analyzing the method in ¢ different contexts (or,
equivalently, increasing context depth by 1) will ideally yield n/c
points-to facts per context, perfectly splitting the previous n-object
points-to set. In the worst case, however, increasing the context
depth will result in ¢ copies of n points-to facts each: the extra
context depth will not have yielded more precision, but will have
multiplied the space and time costs.

The focus of our work is on the detection and prevention of
pathological behavior in context-sensitive analyses, with minimal
intervention. In this way, we achieve many of the precision ben-
efits of context-sensitivity without sacrificing scalability. It does
not seem possible to know in advance (e.g., by identifying syn-
tactic features of the program) which program elements may be
responsible for pathological behavior. Nevertheless, we argue that
it is possible to identify such elements with a scalable context-
insensitive analysis. We introduce the concept of introspective
context-sensitivity: during a first, context-insensitive, analysis pass,
the analysis observes symptoms indicating that the cost may get
out of hand for deeper context. This detects exactly the pathology
identified above. In its simplest form, the analysis will ask “which
program sites currently have points-to information that may grow
too large for an extra level of context?” Using a configurable sec-
ond pass, such sites will be re-analyzed with shallow context, even
though the rest of the program will be re-analyzed with a deeper
context. Note that this approach adaptively tunes the precision of
the analysis for the entire program, and not only for a single goal
or single client analysis, as in earlier refinement-based [25], prun-
ing [16], or client-driven [8] techniques—our related work section
includes a detailed discussion.

The net outcome of our work is not a “first line of defense”
analysis, but an “if all else fails” analysis. Users are still better
advised to first use traditional context-sensitive algorithms, in the
hope that these will scale well and provide good precision. When
this fails, however, we show that we can provide a highly reliable
knob so that the user can “dial-in” scalability, to the exact level re-
quired. For instance, as seen in Figure 1, a precise 20bjH analysis

fails to run in under 60mins on a 24GB machine for 3 of our ex-
perimental subjects. However, we can get an introspective context-
sensitive analysis to scale to all benchmarks in under 12mins, while
still gaining significant precision over a context-insensitive analy-
sis. Yet another introspective analysis scales to all but one bench-
mark in under 20mins, while sacrificing very little precision (keep-
ing about 2/3 of the precision gains of a full 20bjH analysis). For
call-site-sensitive analyses, the gains are even more pronounced,
with several benchmarks exhibiting at least 300% speedups.
Overall, our paper makes the following contributions:

e We offer an approach to refining a context-sensitive analysis
while avoiding its worst-case cost. The approach relies on first
running a context-insensitive analysis and using its results to in-
form the application of context-sensitivity. Much of the challenge
concerns the question of how to use this information, i.e., what
heuristics yield good behavior.

e We encode the approach in a simple form, by incremental modi-
fications of a general declarative analysis pattern. Therefore, our
approach works on virtually any algorithm expressed in this man-
ner. Our implementation is on the Doop framework [2] and al-
ready applies to the over 30 analysis algorithms that the frame-
work has to offer.

e We show experimentally the benefit of introspective context-
sensitivity. We quantify the precision loss and scalability gains
for different parameter settings and show that there is a dial that
users can tune, to select points in this spectrum. Even our high-
precision settings are effective in eliminating behavior outliers,
showing that introspective context-sensitivity has core value: pre-
viously hopeless analyses suddenly become feasible, for little pre-
cision loss. We believe that the result is to give confidence that
context-sensitive analyses can be used in virtually any setting and
not just in the nebulous “when they work well” case.

2. Base Model for Introspective
Context-Sensitivity

We demonstrate introspective context-sensitivity via incremen-
tal changes to an existing model for context-sensitive, flow-
insensitive! points-to analysis algorithms [11, 12]. The logical for-
malism of this model is very close to the core components of our
actual analysis implementation. Therefore, the model acts both as
background and as the main building block of the refinement logic
in later sections. The key element of the model is the ability to use
two different kinds of context, on a per-program-site basis.

Preliminaries. Out model captures the core points-to analysis
logic, as well as online call-graph construction, as a parametric
Datalog program. Datalog rules are monotonic logical inferences
that repeatedly apply to infer more facts until fixpoint. Our rules
do not use negation in a recursive cycle, or other non-monotonic
logic constructs. The result is a declarative specification: the order
of evaluation of rules or examination of clauses cannot affect the
analysis outcome. The abstract model can be parameterized to yield
a context-insensitive Andersen-style [1] analysis, as well as sev-
eral context-sensitive analyses: call-site-sensitive [22, 23], object-
sensitive [20], and type-sensitive [24].

The input language is a representative simplified intermediate
language with a) a “new” instruction for allocating an object; b) a
“move” instruction for copying between local variables; c) “store”
and “load” instructions for writing to the heap (i.e., to object fields);

! Flow-sensitivity refers to taking into account the intra-procedural control-
flow of the program—e.g., that an instruction may always precede another.
Flow-sensitivity can be approximated in a flow-insensitive setting by first
putting the input in static-single-assignment (SSA) form.



d) a “virtual method call” instruction that calls the method of the
appropriate signature defined in the dynamic class of the receiver
object. This language models well the Java bytecode representa-
tion,? but also other high-level intermediate languages. The speci-
fication of our points-to analysis as well as the input language are
in line with others in the literature [7, 17], although we also inte-
grate elements such as on-the-fly call-graph construction and field-
sensitivity.

Specitying the analysis logically as Datalog rules has the ad-
vantage that the specification is close to the actual implementation.
Datalog has been the basis of several implementations of program
analyses, both low-level [2, 13, 21, 30, 31] and high-level [5, 9].
Indeed, the analysis we show is a faithful model of the implemen-
tation in the Doop framework [2], upon which our work builds.
Our specification of the analysis (Figures 2-3) is an abstraction of
the actual implementation in the following ways:

e The implementation has many more rules. It covers the full
complexity of Java, including rules for handling reflection, na-
tive methods, static fields, string constants, implicit initialization,
threads, and a lot more. The Doop implementation contains over
600 rules in the common core of all analyses, and several more
rules specific to each analysis, as opposed to the 10 rules we ex-
amine here. (Note, however, that these few rules are the most cru-
cial for points-to analysis. They also correspond fairly closely to
the algorithms specified in other formalizations of points-to anal-
yses in the literature [18, 24].)

e The implementation also reflects considerations for efficient exe-
cution. The most important is that of defining indexes for the key
relations of the evaluation. Furthermore, it designates some rela-
tions as functions, defines storage models for relations (e.g., how
many bits each variable uses), designates intermediate relations
as “materialized views” or not, etc. No such considerations are
reflected in our model.

High-level structure. The high-level structure of our model is
simple: the core analysis is merely the parametric analysis of past
work [11, 12] enhanced with the ability to create two different kinds
of context—regular or refined. The analysis accepts extra input
relations that identify program elements (allocation and call sites)
to be analyzed with a refined context. How these input relations are
defined is the topic of Section 3.

Figure 2 shows the domain of our analysis (i.e., the different
value sets that constitute the space of our computation), its input
relations, the intermediate and output relations, as well as four con-
structor functions, responsible for producing new contexts. Figure 3
shows the points-to analysis and call-graph computation.

Input relations. The input relations correspond to the intermedi-
ate language for our analysis. They are logically grouped into rela-
tions that represent instructions, relations that represent name-and-
type information, and parameterization relations for introspective
context-sensitivity. For instance, the ALLOC relation represents ev-
ery instruction that allocates a new heap object, heap, and assigns
it to local variable var inside method inMeth. (Note that every local
variable is defined in a unique method, hence the inMeth argument
is also implied by var but is included to simplify later rules.) There
are similar input relations for all other instruction types (MOVE,
LOAD, STORE, and VCALL).

2The Java bytecode language is a stack-based intermediate language, for
reasons of compactness. For analysis purposes, however, it is common to
translate it into equivalent but more conventional notations, such as the
Jimple intermediate language of the Soot framework [28, 29]. It is more
accurate to say that our intermediate language is a simplified form of Jimple,
rather than a simplified form of the Java bytecode.

V' is a set of program variables

H is a set of heap abstractions (i.e., allocation sites)

M is a set of method identifiers

S is a set of method signatures (including name, type signature)
F'is a set of fields

1 is a set of instructions (mainly used for invocation sites)

T is a set of class types

N is the set of natural numbers

C'is a set of (calling) contexts

HC is a set of heap contexts

ALLOC (var : V, heap : H, inMeth : M)
MOVE (t0 : V, from : V)

LOAD (10 : V, base : V, fld : F)

STORE (base : V, fld : E, from : V)

VCALL (base : V, sig : S, invo : I, inMeth : M)

#var = new ...
#to = from

# to = base.fld

# base.fld = from
# base.sig(..)

FORMALARG (meth : M, i : N, arg : V)
ACTUALARG (invo : I, i : N, arg : V)
FORMALRETURN (meth : M, ret : V)
ACTUALRETURN (invo : I, var : V)
THISVAR (meth : M, this : V)
HEAPTYPE (heap : H, type : T)
LOOKUP (type : T, sig : S, meth : M)

SITETOREFINE (invo : I, meth : M)
OBJECTTOREFINE (heap : H)

VARPOINTSTO (var : V, ctx : C, heap : H, hctx : HC)
CALLGRAPH (invo : I, callerCtx : C, meth : M, calleeCtx : C)
FLDPOINTSTO (baseH: H, baseHCtx: HC, fld: F, heap: H, hctx: HC)
INTERPROCASSIGN (to0 : V, toCtx : C, from : V, fromCtx : C)
REACHABLE (meth : M, ctx : C)

RECORD (heap : H, ctx : C) = newHCtx : HC

MERGE (heap : H, hctx : HC, invo : I, ctx : C) = newCtx : C
RECORDREFINED (heap : H, ctx : C) = newHCtx : HC
MERGEREFINED (heap : H, hetx : HC, invo : I, ctx : C) = newCtx : C

Figure 2. Our domain, input relations, output relations, and con-
structors of contexts. The input relations are of three kinds: re-
lations encoding program instructions (the kind of instruction
is shown in a comment), relations encoding type system and
other environment information, and relations that filter which call
sites/target methods and which objects should have a different (i.e.,
more precise) context in introspective context-sensitivity.

Similarly, there are relations that encode type system, symbol
table, and program environment information. These are mostly
straightforward. For instance, FORMALARG shows which variable
is a formal argument of a given method at a certain index (i.e., the
¢-th argument). LOOKUP matches a method signature to the actual
method definition inside a type. HEAPTYPE matches an object to
its type, i.e., is a function of its first argument. (Note that we are
shortening the term “heap object” to just “heap” and represent heap
objects as allocation sites throughout.) ACTUALRETURN is also a
function of its first argument (a method invocation site) and returns
the local variable at the call site that receives the method call’s
return value.

Finally, the SITETOREFINE and OBJECTTOREFINE relations
are inputs that are used exclusively for the purposes of introspective
context-sensitivity. They encode the program points (allocation
sites, heap, and invocation site/method combinations, invo, meth)
that will employ a different context abstraction from the rest.



INTERPROCASSIGN (to, calleeCtx, from, callerCtx) <—
CALLGRAPH (invo, callerCtx, meth, calleeCtx),
FORMALARG (meth, i, to), ACTUALARG (invo, i, from).

INTERPROCASSIGN (to, callerCtx, from, calleeCtx) <—
CALLGRAPH (invo, callerCtx, meth, calleeCtx),
FORMALRETURN (meth, from), ACTUALRETURN (invo, to).

RECORD (heap, ctx) = hetx,

VARPOINTSTO (var, ctx, heap, hctx) <—
REACHABLE (meth, ctx), ALLOC (var, heap, meth),
!OBJECTTOREFINE (heap).

# duplicate rule, for introspective context-sensitivity

RECORDREFINED (heap, ctx) = hetx,

VARPOINTSTO (var, ctx, heap, hctx) <—
REACHABLE (meth, ctx), ALLOC (var, heap, meth),
OBJECTTOREFINE (heap).

VARPOINTSTO (to, ctx, heap, hctx) <—
MOVE (1o, from), VARPOINTSTO (from, ctx, heap, hctx).

VARPOINTSTO (to, toCtx, heap, hctx) <—
INTERPROCASSIGN (to, toCtx, from, fromCtx),
VARPOINTSTO (from, fromCtx, heap, hctx).

VARPOINTSTO (to, ctx, heap, hctx) <—
LOAD (to, base, fld), VARPOINTSTO (base, ctx, baseH, baseHCtx),
FLDPOINTSTO (baseH, baseHCix, fld, heap, hctx).

FLDPOINTSTO (baseH, baseHCtx, fld, heap, hctx) <—
STORE (base, fld, from), VARPOINTSTO (from, ctx, heap, hctx),
VARPOINTSTO (base, ctx, baseH, baseHCtx).

MERGE (heap, hctx, invo, callerCtx) = calleeCtx,

REACHABLE (toMeth, calleeCrx),

VARPOINTSTO (this, calleeCtx, heap, hctx),

CALLGRAPH (invo, callerCtx, toMeth, calleeCtx) <—
VCALL (base, sig, invo, inMeth), REACHABLE (inMeth, callerCtx),
VARPOINTSTO (base, callerCtx, heap, hctx),
HEAPTYPE (heap, heapT), LOOKUP (heapT, sig, toMeth),
THISVAR (toMeth, this),
ISITETOREFINE (invo, toMeth).

# duplicate rule, for introspective context-sensitivity
MERGEREFINED (heap, hetx, invo, callerCrx) = calleeCtx,
REACHABLE (toMeth, calleeCtx),
VARPOINTSTO (this, calleeCtx, heap, hctx),
CALLGRAPH (invo, callerCtx, toMeth, calleeCtx) <—
VCALL (base, sig, invo, inMeth), REACHABLE (inMeth, callerCtx),
VARPOINTSTO (base, callerCtx, heap, hctx),
HEAPTYPE (heap, heapT), LOOKUP (heapT, sig, toMeth),
THISVAR (toMeth, this),
SITETOREFINE (invo, toMeth).

Figure 3. Datalog rules for the points-to analysis and call-graph
construction.

Computed relations. There are five output or intermediate com-
puted relations: VARPOINTSTO, ..., REACHABLE.? Every occur-
rence of a method or local variable in computed relations is qual-
ified with a context (i.e., an element of set C), while every oc-
currence of a heap object is qualified with a heap context (i.e.,
an element of HC). The main output relations are VARPOINTSTO
and CALLGRAPH, encoding our points-to and call-graph results.
The VARPOINTSTO relation links a variable (var) to a heap object
(heap). Other intermediate relations (FLDPOINTSTO, INTERPRO-
CASSIGN, REACHABLE) correspond to standard concepts and are
introduced for conciseness and readability.

Constructors for context-sensitivity. The base rules are not con-
cerned with what kind of context-sensitivity is used. The same
rules can be used for a context-insensitive analysis (by only ever
creating a single context object), for a call-site-sensitive anal-
ysis, or for an object-sensitive analysis, for any context depth.
These aspects are completely hidden behind constructor functions
RECORD and MERGE, and their counterparts RECORDREFINED
and MERGEREFINED, used for introspective context-sensitivity—
as explained below. RECORD and MERGE follow the usage and
naming convention of earlier work [12, 24]. RECORD takes all
available information at the allocation site of an object and com-
bines it to produce a new heap context, while MERGE takes all
available information at the call site of a method and combines it
to create a new calling context (or just “context”). Heap contexts
qualify heap objects in order to provide more fine-grained differ-
entiation than mere allocation sites. Calling contexts are used to
qualify method calls, i.e., they are used for local variables in a pro-
gram. In this way, variables that pertain to different invocations of
the same method are distinguished, as much as the context gran-
ularity allows. These functions are sufficient for modeling a very
large variety of context-sensitive analyses. Explaining the differ-
ent kinds of context-sensitivity produced by varying RECORD and
MERGE is beyond the scope of this paper—this approach is inher-
ited from past literature[12, 24]. To give a single example, how-
ever, a 1-call-site-sensitive analysis with a context-sensitive heap
has C = HC' = I (i.e., both the context and the heap context are
a single instruction), RECORD (heap, ctx) = ctx and MERGE (heap,
hetx, invo, callerCtx) = invo. That is, when a method is called, its con-
text is its call site (invo) and when an object is allocated, its heap
context is the context (ctx) of the allocating method (i.e., the call
site that invoked the allocating method).

The RECORDREFINED and MERGEREFINED constructors
are directly analogous to RECORD and MERGE but just apply to
different program points. These constructors are the machinery for
introspective context-sensitivity: they vary the context-sensitivity
of the analysis for a subset of the heap objects and methods.

Analysis logic. The rule syntax in Figure 3 is simple: the left
arrow symbol («—) separates the inferred facts (i.e., the head of
the rule) from the previously established facts (i.e., the body of the
rule). For instance, the first rule states that, if we have computed a
call-graph edge between invocation site invo and method meth (un-
der some contexts), then we infer an inter-procedural assignment to
the ¢-th formal argument of meth from the ¢-th actual argument at
invo, for every 1.

The last rule (in duplicate) is the most involved. It states that
if the original program has an instruction making a virtual method
call over local variable base (this is an input fact), and the compu-
tation so far has established that base can point to heap object heap

3 REACHABLE is somewhat of a special case, since we assume it is also
used as an input relation: it needs to initially hold methods that are always
reachable, such as the programs’s main method, the constructor of class
java.lang.ClassLoader, and more. We ignore this technicality in the
model, rather than burden our rules with a separate input relation.



under a context for which the method is reachable, then the called
method is looked up by-signature inside the type of ieap and several
further facts are inferred: that the looked up method is reachable,
that it has an edge in the call-graph from the current invocation
site, and that its this variable can point to heap. Additionally, the
MERGE/MERGEREFINED function is used to possibly create (or
look up) the right context for the current invocation.

Note that the rules that use context constructors (RECORD and
MERGE) are essentially duplicated. (In the full implementation,
there are some two-dozen rules that construct new contexts, in-
stead of the two in the model, and all are duplicated accordingly.)
Each rule has two versions: one for objects (resp. method calls) that
should have a default context and one for those that should have a
different, refined context. Therefore, we can effect any change we
want to the context-sensitivity of an analysis, on a per-object/per-
site basis, by supplying the right input relations OBJECTTORE-
FINE or SITETOREFINE and setting the appropriate constructors,
RECORDREFINED and MERGEREFINED to implement a differ-
ent flavor of context-sensitivity. We discuss such options next.

3. How To Selectively Refine

The model of the previous section allows configurability of context-
sensitivity in a large variety of ways. For instance, some methods
(or some call sites) can be analyzed with object-sensitivity while
others are analyzed with call-site-sensitivity, of any depth. One
aspect to determine, therefore, is the two analyses that will be used
in different program points.

Another question is how to populate the OBJECTTOREFINE and
SITETOREFINE input relations. One could attempt to do so by mere
static inspection of the program at the syntax and type level. For
example, methods containing cast statements or methods with weak
type information in their signature (e.g., Object-typed arguments)
can be analyzed with a higher context depth. In our work, we have
failed to identify such surface heuristics that would yield benefit.
Instead, we rely on running a quick analysis and then querying
its results in order to determine which sites can be analyzed more
precisely.

Introspective context-sensitivity. Our approach consists of run-
ning the analysis twice. The first time, OBJECTTOREFINE and
SITETOREFINE are empty. The MERGE/RECORD context con-
structors are set so that an inexpensive but scalable analysis is per-
formed. In our experimental setting, these constuctor functions re-
turn a unique constant value, %, resulting in a context-insensitive
analysis:

RECORD (heap,ctx) = %
MERGE (heap, hctx, invo, ctx) =

The MERGEREFINED and RECORDREFINED constructors
are set to implement an expensive context-sensitive analysis, fol-
lowing past techniques [12]. Yet, these constructors are not relevant
in the first analysis run, since the rules employing them are pred-
icated on having elements in SITETOREFINE and OBJECTTORE-
FINE, respectively.

Subsequently, we use the results of the context-insensitive anal-
ysis to compute which program elements to refine (i.e., to populate
the SITETOREFINE and OBJECTTOREFINE relations), and run the
analysis a second time. The result is that a subset of the program
elements are analyzed context-sensitively, while the rest are ana-
lyzed context-insensitively even during the second analysis run. In
practical terms, the former set is larger than the latter: we focus
on identifying a relatively small number of program elements that
may disproportionately affect analysis costs and to analyze them

context-insensitively, while the majority of program elements are
analyzed context-sensitively.*

It is worth emphasizing again that the two runs of the analy-
sis use identical code—the only difference is that predicates OB-
JECTTOREFINE and SITETOREFINE are empty in the first run but
populated in the second.

Metrics and heuristics. 'The main challenge is to identify a pro-
gram query/client analysis (over the results of a context-insensitive
points-to analysis) to predict which program elements should not
be refined. Our criterion is based on cost rather than expected ben-
efit, since the latter is very hard to estimate in an all-points (as op-
posed to a client- or demand-driven) program analysis. There are
several cost metrics that we can mix-and-match to create introspec-
tive analysis heuristics. Examples include:

1. Compute at every invocation site the cumulative size of all
points-to sets of actual arguments to the method call. (This is
the argument in-flow of the method call.)

2. Compute for every method the cumulative (or maximum, for
a variant of the metric) size of points-to sets over all local
variables. (This is the method’s fotal points-to volume or max
var-points-to.)

3. Compute for each object (i.e., allocation site) the maximum (or
total, for a variant of the metric) field points-to set over all of
its fields (This is the object’s max field points-to, or total field
points-to.)

4. Compute for every method the maximum max field-points-
to (metric 3) among objects pointed to by the method’s local
variables. (This is the method’s max var-field points-to.)

5. Compute for each object (i.e., allocation site) the number of
local variables pointing to it. (This is the object’s pointed-by-
vars metric.)

6. Compute for each object (i.e., allocation site) the number
of object-and-field pairs pointing to it. (This is the object’s
pointed-by-objs metric.)

As can be seen, these metrics can vary in sophistication but all
of them attempt to estimate the cost that will be incurred if the same
method or allocation site were to be analyzed context-sensitively.
Indeed, our emphasis is not on the sophistication of the metrics
or on their fine-tuning. Instead, it is on their simplicity and ease
of composition so that one can create parameterizable analyses: a
knob for adjusting the precision/scalability tradeoff. For example,
we propose two heuristic combinations of these metrics:

e Heuristic A: Refine all allocation sites except those with a
pointed-by-vars (metric #5) higher than a constant K. Refine all
method call sites except those with either an in-flow (metric #1)
higher than a constant L or a max var-field points-to (metric #4)
higher than a constant M.

e Heuristic B: Refine all method calls sites except those that in-
voke methods with a total points-to volume (metric #2) above a
constant P. Refine all object allocations except those for which
the product of total field points-to and pointed-by-vars (metrics
#3 and #5) exceeds a constant (). The product of these two met-
rics can be seen as an object’s total potential for weighing down
the analysis.

4 Since sets SITETOREFINE and OBJECTTOREFINE are much smaller than
their complements, it is efficient to compute them in complement form. Our
implementation offers this option with extra flags, not captured in the model
of Section 2.



These heuristics are themselves tunable, by adjusting the con-
stant parameters. In the rest of the paper, when we refer to Heuris-
tic A in measurements, the values of K, L, M will be 100, 100,
and 200, respectively; when we refer to Heuristic B, the values of
P and @ will both be 10000. The point of picking clear-cut ref-
erence numbers is to argue that the value of the technique does
not come from excessive tuning but from the underlying power of
the introspective analysis idea—even relatively large variations of
these numbers make scarcely any difference in the total picture of
results over multiple programs.

Discussion: Intuition. Our heuristic approach is based on the in-
sight that there are many program elements whose analysis cost
is vastly disproportionate to their importance. If such elements are
analyzed less precisely, the analysis will avoid significant burden
without incurring large precision losses. (Note that our heuristics
try to estimate “disproportionate cost” but have no way of estimat-
ing the “importance” of a program element. It would be an inter-
esting direction for future work to estimate this importance, i.e., to
define metrics that capture the extent of the impact of a program
element’s precision on all other program elements.)

These heuristics estimate the potential cost of a context-
sensitive analysis based on observations on the structure of the anal-
ysis computation. First, the cost of an analysis is often determined
by the size of the main two relations it computes: VARPOINTSTO
and FLDPOINTSTO. In a context-sensitive setting, the size of these
relations can grow dramatically. We have no a priori knowledge of
which program elements will contribute many tuples to the context-
sensitive version of these relations, but we have this information
for the context-insensitive version of the relations. Thus, most of
the metrics (e.g., #1, #2, #3, #5, #6) directly count the number of
tuples in which a program element participates, to use as an indica-
tion of its cost contribution. Adding more context will potentially
just multiply this contribution by the number of distinct contexts.

At the same time, other metrics (e.g., #4, and the product of #3
and #5) are combinatorial: they combine two points-to relationships
and see what the cost may be. Such combinations try to capture
computation costs not reflected in the size of the final result. To see
this, consider that the same context-sensitive points-to fact (i.e., a
tuple in the final VARPOINTSTO relation) can be computed in a
multitude of ways. Consider, for instance, our rule from Section 2
that derives a var-points-to relationship from a field-points-to one:

VARPOINTSTO (to, ctx, heap, hctx) <—
LOAD (to, base, fid), VARPOINTSTO (base, ctx, baseH, baseHCtx),
FLDPOINTSTO (baseH, baseHCtx, fld, heap, hctx).

All information on the field (fid), holder heap object (baseH), and
its context (baseHCtx) is dropped in the final result. The exact same
tuple of the VARPOINTSTO relation can be produced for different
fields and holder heap objects, resulting in extra computation cost,
and this cost will be multiplied for a context-sensitive analysis,
when heap context is added. The product of metrics #3 and #5 aims
to capture such hidden costs.

Implementation. The above metrics and heuristics can be eas-
ily implemented as short analyses over the result of a context-
insensitive points-to analysis. For instance, the implementation of
the in-flow metric (#1) is the following Datalog query, which de-
fines an intermediate predicate and aggregates over it. (“_” is a
nameless variable denoting any value, and agg<...> denotes an ag-

gregation operation—in this case a total count of matching tuples.)

HEAPSPERINVOCATIONPERARG (invo, arg, heap) <—
CALLGRAPH (invo, , _, _),
ACTUALARG (invo, ., arg),
VARPOINTSTO (arg, -, heap, ).

INFLOW (invo, result) <—
agg<result = count()>
(HEAPSPERINVOCATIONPERARG (invo, _, _)).

Our full implementation can be found in the Doop framework
distribution, as described in Section 7.

4. Evaluation

Our evaluation setting uses the LogicBlox Datalog engine, v.3.9.0,
on a Xeon E5530 2.4GHz machine with only one thread running
at a time and 24GB of RAM. We analyze the DaCapo benchmark
programs (v.2006-10-MR2) with Open JDK 1.6.0_24. We run all
benchmarks with default Doop settings, including full reflection
support. We selected a priori 6 of the Dacapo benchmarks as our
experimental subjects. These are the programs that exhibit scalabil-
ity problems based on past literature [12]: other benchmarks typi-
cally run in half the time of the fastest benchmark of our set for
deep context-sensitive analyses. Since our technique is explicitly
not a “first line of defense”, benchmarks that are already certain to
scale are out of scope.

We evaluate two variants of introspective context-sensitivity
corresponding to Heuristic A and Heuristic B from Section 3. As
discussed earlier, applying our heuristics results in a relatively
small number of call sites and objects to avoid refinement. Figure 4
shows these statistics. As can be seen, Heuristic A is much more
aggressive in preventing refinement, whereas Heuristic B is quite
selective. In both cases, however, the program elements that are
refined are the overwhelming majority.

Call Sites
Heur. A | Heur. B
bloat 28.0 % 0.7 %
chart 13.7 % 34 %

Objects
Heur. A | Heur. B
12.3 % 7.1 %
12.0 % 5.0 %

eclipse 14.5 % 0.0 % 11.0 % 5.0%
hsqldb 30.0 % 1.1 % 168 % | 14.0%
jython 36.0 % 3.0% 250% | 18.8%

10.5 % 53%
13.0 % 7.8 %
14.37 % 9.0 %

pmd 12.5 % 0.0 %
xalan 18.0 % 0.0 %
average | 21.81 % 1.18 %

Figure 4. Number of call sites and objects selected to not be
refined by each introspective variant. All results are rounded to the
first decimal digit.

The results of our performance experiments are shown in Fig-
ures 5, 6, and 7. We test the three main flavors of context-
sensitivity: object-sensitivity [19, 20], call-site-sensitivity [22, 23],
and type-sensitivity [24]. The three flavors have very different pro-
files of practical use and scalability, as detailed next.

Object-sensitivity. Deep-context object-sensitive analyses are the
most precise in practice, but do not always scale well. Starting
from a 2-object-sensitive analysis with a (1-)context-sensitive heap
(20bjH), we define our two introspective versions (20bjH-IntroA
and 20bjH-IntroB for Heuristic A and Heuristic B, resp.). Figure 5
plots first the execution time and then three precision metrics for all
analyses. In all cases lower is better. There is no real “metric” for
precision, since each client may have unique needs, but our three
metrics together should yield a reasonable projection of precision.
Note that since there is no “ground truth” for the ideal value of
precision metrics, their chart scales are arbitrary (and differences
are not as visually pronounced as could be because of plotting
multiple benchmarks on a single chart) but the insensitive/2objH
analyses serve as upper/lower reference markers in practice. We
use a 90min timeout. The jython and hsqldb benchmarks did not
terminate for 20bjH, and jython did not terminate for 2objH-IntroB
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Figure 5. Performance and precision (3 separate metrics: calls that cannot be devirtualized, reachable methods, casts that cannot be
eliminated) for introspective context-sensitive variants of a 2objH analysis, compared with baselines (20bjH and insensitive).

either. We indicate non-termination with full bars in the top (time)
chart and the absence of bars in the bottom three (precision) charts.

As can be seen, the two introspective variants scale much better
than the full 20objH analysis. Indeed, IntroA scales to all bench-
marks, while showing significant precision gains over an insen-
sitive analysis. IntroB is even more precise: it covers more than
two-thirds of the precision advantage of 20bjH over an insensitive

analysis for most benchmarks and precision metrics, while scaling
significantly better.

Type-sensitivity. Type-sensitivity is designed with the explicit
purpose of providing more scalability than object-sensitivity but in
a very different manner: instead of avoiding high context depths,
type-sensitivity makes each context element coarser. Thus it is
doubly interesting to see if introspection can add benefit to type-
sensitive analyses. Type-sensitivity is not immune to the patholo-
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gies of object-sensitivity: for instance, in our benchmark set it does
not scale to jython.

Figure 6 shows our results, plotting variants of a 2-type-
sensitive analysis with a (1-)context-sensitive heap (2typeH), and
following the same conventions as earlier. (The insensitive base-
line is inherited and not re-run.) As can be seen, the IntroB ver-
sion scales to all programs while typically maintaining very good
precision—often close to the full 2typeH. The IntroA version has

the desirable feature of near-perfect scalability: its maximum run-
time for any benchmark is 360sec. At the same time it exhibits pre-
cision gains compared to a context-insensitive analysis, although
these are noticeably lower than the precision gains of IntroB.

Call-site-sensitivity. Call-site-sensitivity is the traditional flavor
of context-sensitivity—a virtual synonym for the term. In practice,
call-site-sensitivity is quite good for some analysis clients but al-
most never scalable at context depths greater than 1.
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Figure 7. Performance and precision (3 separate metrics: calls that cannot be devirtualized, reachable methods, casts that cannot be
eliminated) for introspective context-sensitive variants of a 2callH analysis, compared with baselines (2callH and insensitive).

As Figure 7 shows, introspective context-sensitivity performs
remarkably well when applied to a 2-call-site-sensitive analysis
with a (1-)context-sensitive heap (2callH). The base 2callH analysis
does not terminate for 4-out-of-6 of our benchmarks, while intro-
spective analyses terminate either for all (IntroA) or for nearly all
(5-out-of-6 for IntroB). Furthermore, IntroB seems to achieve the
full precision of 2callH for the two benchmarks for which the lat-
ter yields results, and for all different metrics! Combined with the

across-the-board scalability gains shown in the timing chart, this
confirms the effectiveness of introspection for tuning out extreme
analysis costs. IntroA is not far behind in precision, obtaining more
than two-thirds of the precision gains of IntroB for most metrics
and benchmarks.

Discussion. The above timings of introspective context-
sensitivity do not include the cost of first running a context-
insensitive analysis, and other timing overheads (relatively constant



at about 100sec) related to computing the objects and sites to re-
fine and re-running an analysis (our current implementation saves
the first-run database and re-generates it from scratch). We did not
include these numbers in the timings in order to keep the presen-
tation simpler but also because (a) our emphasis is on scalability
and not on small-scale speed gains—we consider small differences
in timings, e.g., in the chart and eclipse benchmarks of Figure 5,
to be negligible for our purposes; and (b) these constant overheads
can be factored out—e.g., with minor engineering we could have
incurred them only once per benchmark and not once per run of
every introspective analysis variation.

Based on our experimental results, introspective context-
sensitivity achieves its goal: it offers a knob for users to select
points in the scalability/precision spectrum. The tradeoffs of cost
and precision exhibited by Heuristic A and Heuristic B are illustra-
tive. Not only do these heuristics yield different options (more pre-
cision vs. more scalability) but they are also very consistent in their
tradeoff, throughout multiple benchmarks and analysis flavors.

Finally note that we used identical introspection heuristics
(Heuristic A and Heuristic B) with the same constants (see Sec-
tion 3) for all three context-sensitivity flavors and for all bench-
marks. This suggests that there are significant opportunities for
further tuning: different heuristics can be used, the constants can
be optimized, the constants or the heuristics can be adapted per-
benchmark or per-context flavor. However, the goal of our experi-
ments is not to squeeze out a few percentage points of speedup but
to show that the simple idea of introspective context-sensitivity can
easily offer very useful tradeoffs in scalability and precision.

5. Related Work

The effort to tune the context-sensitivity of an analysis is perva-
sive in the literature. Nevertheless, most approaches fundamentally
differ from ours, either by trying to vary context-sensitivity based
on syntactic properties or by trying to focus on only a part of the
program that matters for answering a given query. In contrast, we
attack the context-sensitive scalability problem head-on, in the all-
points points-to analysis setting, with context used all over the pro-
gram and library.

Typical scalable points-to analysis frameworks such as Wala [6]
and Doop [2] employ a multitude of low-level heuristics for tuning
the precision and scalability of an analysis. These include using
extra context for collection classes, using a heap context for arrays
in an analysis without a context-sensitive heap, allocating strings
or exceptions context-insensitively, treating library factory methods
with deeper context, etc. Such heuristics are typically user-selected
and prominent in the documentation of the respective frameworks,
and have also appeared in the literature (e.g., [11, 27]). However, all
such approaches are mere hard-coded heuristics and do not address
the major scalability problem that our approach aims to solve.
The scalability issues identified in earlier literature and discussed
throughout this paper are present after all such heuristics have been
employed.

A more general approach is hybrid context-sensitivity, which
consists of treating virtual and static method calls differently [12].
Such a hybrid analysis attempts to emulate call-site-sensitivity for
static method calls and object-sensitivity for dynamic calls. The
approach becomes interesting when context is deep (e.g., how
are context elements merged when a dynamic call is made in-
side a static call?). Nevertheless, the hybrid context-sensitivity ap-
proach does not change the essence of the problem we are trying
to solve. For hard-to-analyze applications, hybrid context-sensitive
algorithms are equally unscalable as their component algorithms.
For the purposes of our experimental study, which only tests the
scalability of heavyweight benchmarks, hybrid context-sensitivity
is virtually indistinguishable from object-sensitivity.

More interesting applications of selective context-sensitivity
have been explored in the context of demand-driven or client-
driven pointer analysis. Such analyses reduce cost by computing
only those results that are necessary for a specific query at a given
program location, or by taking into account the precision needs of
a specific client [8, 10, 25, 26, 32].

In the demand-driven and client-driven space, refinement-based
analyses have been used in work such as that of Guyer and Lin [8],
of Sridharan and Bodik [25], and of Liang and Naik [16]. Guyer
and Lin [8] automatically adjust the precision of a points-to anal-
ysis based on the needs of a client analysis. The adjustments con-
cern flow- and context-sensitivity per-program-point. The analy-
sis maintains a directed dependence graph that connects program
points to polluting assignments: analysis points where precision
may have been lost.

Sridharan and Bodik [25] introduce refinement-based analysis
as a way to adaptively increase the precision characteristics of an
existing analysis algorithm when a client analysis is not satisfied
with the result. The approach allows turning on field-sensitivity, as
well as higher call-site-sensitivity for an analysis algorithm. Yet,
unlike ours, it is not a general approach that can apply to any kind
of context and a large number of different algorithms.

Liang and Naik’s “pruning” approach [16] consists of first com-
puting a coarse over-approximation of the points-to information,
while keeping the provenance of this derivation, i.e., recording
which input facts have affected each part of the output. The in-
put program is then pruned so that parts that did not affect the
interesting points of the output are eliminated. Then a highly
context-sensitive precise analysis is run, in order to establish the
desired property. This approach is similar to introspective context-
sensitivity in that the analysis is run twice and a separate query over
the first-run result determines the second run’s characteristics. Nev-
ertheless, our approach requires no provenance computation (which
is unlikely to scale for an all-points analysis) and works even when
we want answers for the entire program and any possible client
analysis—i.e., when pruning is not possible.

All of the above demand- or client-driven approaches can be
viewed as complements of our introspective context-sensitivity. In
the client-driven world, it is possible to estimate the benefit that a
more precise analysis may yield: either the client is happy with the
current level of precision (which implies there is no further benefit
to be obtained) or it is not, in which case more precision should
be added. In our all-points pointer analysis problem we have no
such information. This motivates our cost-based heuristics, which
attempt to estimate “what can go wrong” when more precision
gets added, as opposed to “what can be gained”, as in client-driven
techniques.

6. Conclusions

We introduced introspective context-sensitivity: an approach to
making context-sensitive analyses scale. The approach consists of
defining an analysis with two separate kinds of context. Each pro-
gram element is analyzed with one kind, selected based on exter-
nal input. Then, by first running an inexpensive context-insensitive
analysis, we can identify program elements that should be treated
with a more precise context and others that should be treated less
precisely to avoid an explosion in complexity. Our technique ap-
plies to any kind of context abstraction and yields scalability a la
carte: the user can select a scalability profile and achieve it for a
price in precision. As shown in our experiments, this price is not
too steep. The precision loss of introspective context-sensitivity can
be minuscule (as is for call-site-sensitive analyses), while the scal-
ability gain is substantial.

We believe that introspective context-sensitivity is a big step
forward in pointer analysis. It is not just an effective technique, but



an effective technique that addresses the major current pain point
in practical applications of points-to analyses.

7. Artifact

Our implementation is integrated in the latest release of the Doop
framework, available at http://doop.program-analysis.
org/. Doop itself is the main and ongoing artifact of our work.
For ease of reference, the specific analyses of this paper, with the
exact experimental settings described, can also be found separately
labeled (PLDI14) in the Doop distribution.
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