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Abstract
A must-alias (or “definite-alias”) analysis computes sets of
expressions that are guaranteed to be aliased at a given pro-
gram point. The analysis has been shown to have significant
practical impact, and it is actively used in popular research
frameworks and commercial tools. We present a custom data
structure that speeds up must-alias analysis by nearly two
orders of magnitude (while computing identical results). The
data structure achieves efficiency by encoding multiple alias
sets in a single linked structure, and compactly representing
the aliasing relations of arbitrarily long expressions. We ex-
plore the data structure’s performance in both an imperative
and a declarative setting and contrast it extensively with
prior techniques. With our approach, must-alias analysis
can be performed efficiently, over large Java benchmarks, in
under half a minute, making the analysis cost acceptable for
most practical uses.

CCS Concepts • Theory of computation → Program
analysis; • Software and its engineering→Automated
static analysis;

Keywords Alias analysis, Datalog, Must analysis, data
structure
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1 Introduction
Most sophisticated static analyses need to model the pro-
gram heap—a task that can prove to be a challenge. An es-
tablished tool to achieve scalable heap modeling is pointer
analysis. There are two major directions one could follow.
Either compute sets of heap objects that program expres-
sions (e.g., variables) may point to—i.e., perform points-to
analysis—or compute program expressions that may refer to
the same heap object—i.e., perform alias analysis.

Each kind comes in two major flavors. If the analysis over-
approximates feasible behaviors we get a May analysis. If it
underapproximates feasible behaviors we get a Must analy-
sis. As a result, when a Must-alias analysis reports aliasing
between program expressions, these are guaranteed to al-
ways be aliases during execution. In order to produce useful
results soundly, a must-alias analysis typically has to em-
ploy flow-sensitivity, i.e., compute information per program
point, taking into account the inherent control-flow of the
program.
A must-analysis for pointers is invaluable for automatic

optimizations, as well as for bug detection that traditionally
has a high false-warnings rate. Nikolić and Spoto [16] report
that a must-alias analysis significantly increases the preci-
sion of both a null-reference detector (46% fewer warnings)
and a non-termination detector (11% fewer warnings). Ear-
lier work has reported similar benefits [13]. Furthermore,
results can form the base of more complex reasoning. For
example, the Doop framework employs a must-alias analysis
for performing “strong updates” at instructions that write
to heap objects. Earlier work has used must-alias analysis to
similar benefit [6, 12].

In this work, we present a data structure that can dramat-
ically speed up the performance of must-alias analysis. The
insights behind the data structure are quite general. First,
must-alias sets are equivalence classes (must-alias is a sym-
metric, transitively-closed relation, unlike typical may-alias).
A naive implementation will explicitly compute each pair in
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these equivalence classes. In contrast, an optimized imple-
mentation will encode aliasing implicitly: as membership in
the same sub-structure. This is a technique also employed in
past static analysis approaches in different settings—e.g., in
the use of union-find trees in Steensgaard-style [19] points-
to analysis. Additionally, aliasing can be implicitly extended
to longer access paths and this inference should be readily
computable in the course of the analysis. For instance, if two
program expressions x and y.next are aliases, then so are all
their extensions—e.g., x.prev and y.next.prev. Such “deriv-
ative” relationships should be represented compactly. In our
data structure, we represent complex program expressions
implicitly until expansion is needed and up to the extent that
must-alias information exists for them.
Our data structure is effectively a symbolic abstraction

of the program’s heap—as a directed graph. We invent for
each variable a graph node: an abstract object that represents
“the object that the variable points to”. Although several ab-
stractions of the heap have appeared in the literature, ours is
distinguished by several elements—e.g., a mere “load” opera-
tion introduces a new abstract object. An abstract object in
our structure represents at most one concrete object, unlike
traditional abstractions that map multiple concrete objects to
one abstract. Whenever a must-alias inference is made, the
corresponding abstract objects are merged: the two abstract
objects have to correspond to the same concrete one. Access
paths are represented implicitly, as regular paths that fol-
low object fields through our symbolic heap. All operations
over the graph arising during a must-alias analysis (esp. the
intersection of graphs) are performed highly efficiently.

We implement the data structure in two settings: impera-
tively, in Java, with destructive updates (upon aliasing, ab-
stract objects are collapsed together) and purely functionally
(upon aliasing, abstract objects are related in an associative
structure). The latter is suitable for a declarative implemen-
tation, in the Datalog language. We show that the data struc-
ture yields large performance improvements compared to
an explicit representation of alias pairs. The imperative ver-
sion achieves a speedup of up to two orders of magnitude,
with the declarative implementation nearly matching it in
most cases. As a result, the running time of a realistic must-
alias analysis becomes small—a few tens of seconds for large
benchmarks and the full Java library.

Overall, our work:

• describes the primitive operations (e.g., set intersection)
that a must-alias analysis needs to perform;

• presents an efficient data structure for representing must-
alias analysis inferences and efficiently encodes operations
over that structure;

• applies the new data structure on an must-alias analysis
implemented in an existing framework and quantifies the
benefits in different implementation settings.

2 Background and Example
We illustrate some basic concepts of must-alias reasoning
with a small example, also used in later sections to illustrate
our data structures and algorithms.

1 class A {
2 A next;
3 B member;
4

5 A(A next , B member) {
6 this.next = next;
7 this.member = member;
8 }
9

10 void foo(A a) {
11 member.container = a;
12 }
13 }
14

15 class B {
16 A container;
17 B(A container) {
18 this.container = container;
19 }
20 }
21

22 public class Test {
23 public static void main(String [] args) {
24 B b1 = new B(null);
25 A a1 = new A(null , b1);
26 A a2;
27 if (args != null)
28 a2 = new A(null , b1);
29 else
30 a2 = new A(a1, b1);
31 b1.container = a2;
32 a1.foo(a1);
33 }
34 }

Figure 1. Simple illustration of must-alias inferences.

Consider the small Java program in Figure 1. Even at this
size, inspecting the program requires human effort. A must-
alias analysis can provide useful information to tools and
humans alike. The output consists of must-alias pairs: ex-
pressions that are guaranteed to point to the same object–
denoted by ∼. (More precise definitions follow in Section 3.)
For instance, a1.member and b1 form an alias pair for almost
the entire body of method main. Alias pairs are established by
direct variable assignments (which are plentiful in a compiler
intermediate language, although less so in original source
code), as well as heap stores and loads. A must-alias analy-
sis has to report aliases only when they are guaranteed to
hold, and needs to invalidate them on store instructions or
method calls that may change the fields of objects pointed
by subexpressions in an alias pair. In Figure 1, b1.container
is an alias for a2 on (i.e., right after) line 31. However, the
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analysis needs to recognize that line 32 invalidates that alias
pair. Line 32 instead establishes an aliasing relationship be-
tween b1.container (as well as a1.member.container) and a1.
The analysis remains sound (i.e., safely under-approximate)
if the earlier b1.container ∼ a2 alias pair is invalidated, re-
gardless of whether the new alias pair (b1.container ∼ a1)
is established, via inter-procedural reasoning, on line 32.

Other aliasing relationships hold throughout the program.
Establishing them often requires some inter-procedural
reasoning—e.g., to see the aliasing effects of the constructor
call on lines 25, 28, or 30. Constructors feature prominently
in the example, since they are one of the best sources of
must-alias information in a typical program.

3 Must-Alias Analysis Needs
Before presenting our optimized data structure for a must-
alias analysis, it is important to ponder upon the properties
of such an analysis and the algorithmic needs that arise if
one is to implement it with performance in mind.

We consider a “must alias” relation defined on access paths,
i.e., expressions of the form “var(.fld)*”. There can be sev-
eral formulations of such must-alias analyses, and our goal
is to identify properties common to all. A concrete reference
point, however, is the must-alias analysis of the Doop Java
bytecode analysis framework [3]—our experimental evalua-
tion will compare against this analysis. In the Doop analysis,
the meaning of theMustAlias(i, ctx, ap1, ap2) relation is that
access path ap1 aliases access path ap2 (i.e., they are guar-
anteed to point to the same heap object, or to both be null)
right after program instruction i, executed under calling con-
text ctx (effectively, a sequence of callers), provided that the
instruction is indeed executed under ctx at program run-time.
The two access paths are said to form an alias pair.

Representing Equivalence Relations. The first observa-
tion regarding the must-alias relation is that it is an equiva-
lence relation. Consider once again the example in Figure 1.
At line 32, a must-alias relationship is established between
various access paths. A naive implementation would have to
explicitly record each aliasing pair, i.e. b1.container with a2,
with a1.member.container and with a1 and so on enforcing
that the relation stays reflexive, symmetric and transitively
closed. In our simple example, for four program expressions
we would need to record twelve distinct pairs (ignoring the
trivial pairs of each expression with itself).
Since must-alias is an equivalence relation, it induces a

partitioning of the space of access paths: every access path
can only belong in one alias (equivalence) class. This means
that we can represent the contents of each class compactly,
by grouping together all aliased access paths. An access path
can denote that it belongs in a certain alias class, e.g., by
having a unique identifier, or by being a member in a linked
data structure. The goal is to represent an alias class using
linear space and time (in the number of its access paths)

instead of enumerating all pairs of aliased access paths (and
taking up quadratic space and time).
It is important to note that the concrete (i.e., dynamic)

“alias” relation is also an equivalence relation, but most may-
alias relations in the static analysis literature are not. For
instance, in a typical subset-based pointer analysis, access
path ap1 may-alias ap2 by pointing to the same abstract ob-
ject (among others). Similarly, ap2 may-alias ap3. However, it
may not be the case that ap1 and ap3 may-alias: the common
elements in the points-to sets of ap1 and ap2 may not be
among the common elements in the points-to sets of ap2 and
ap3. This highly influences all data structure operations. No-
tably, the main algorithm that we will describe (intersection
of data structures when joining control-flow paths) is not
present in a may analysis.

Extending Access Paths. A less obvious observation con-
cerns the representation of aliasing in extended access paths.
A naive implementation would, once again, have to represent
aliases explicitly. For instance, two aliased program variables
x and y will also induce alias pairs x.f and y.f, as well as
x.g and y.g, x.f.g and y.f.g, etc., up to the maximum ac-
cess path length (and modulo valid field accesses). This is
an exponential number, Ω(ck ), of aliased access paths, for c
valid fields and access path length limit of k . The access path
length can be easily limited (e.g., k = 3 does not restrict the
vast majority of useful alias inferences), so the burden is not
insurmountable, but it can still be significant.

Ideally, we would like a data structure that only explicitly
maintains the initial aliasing relationship and can implicitly
derive the aliasing of all extended access paths.

Algorithms. Once we have a data structure that satisfies
the above requirements, what algorithms should we imple-
ment efficiently on this data structure? The basic algorithms
behind most must-alias analysis inferences are straightfor-
ward. The analysis needs to copy alias classes (equivalence
classes), add a single access path, remove a single access
path, or rename variables in a set of alias classes. The only
case that introduces some complexity is the one dealing with
multiple predecessors of an instruction in the control-flow
graph.

In amust-alias analysis setting, in order for an alias pair to
be valid at the instruction where multiple control-flow paths
meet, it should hold in each path. The operation we need
here is that of taking the intersection of alias classes from
many different sets (one for each predecessor instruction). In
our running example, on line 31, we can infer that a2.member
∼ b1 since it holds in both paths, but not that a2.next ∼ a1.
Notably, in contrast to a typical data structure for

equivalence classes (e.g., union-find trees), unions of (non-
singleton) equivalence classes do not arise: if an expression is
newly aliased with others, it is because it is no longer aliased
with its previous aliases. The corresponding operation is a
single access path addition and removal (from a different
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class). Conversely, intersections of alias classes are central
to our structure.

4 An Optimized Data Structure and
Algorithms

Based on the above requirements, we propose an alias graph
data structure (and associated algorithms) for representing
all alias sets of access paths that hold at a certain program
point. In a typical must-alias analysis, a program point is a
possibly context-qualified instruction. Each such instruction-
context combinationmaintains an alias graph and the analysis
updates it until fixpoint. An updated alias graph depends
on the earlier graph for the same program point, on the
graphs of its predecessor instructions, and on the current
instruction’s semantics.
We begin with a description of the easier case: how the

current instruction affects the alias graph. This will also help
illustrate the data structure.
The intuition is that an alias graph abstractly represents

local variables and the heap, with abstract objects as place-
holders for concrete objects. Nodes (abstract objects) are
alias classes, edges are field-points-to relationships. Every
abstract object, however, corresponds to (at most) a single
concrete object at the current program point: our data struc-
ture is isomorphic with a part of the concrete heap. This
property is true only because the data structure represents
definite (must) aliasing.
We illustrate with simple examples. It is worth noting

once again that every program instruction will maintain a
different alias graph. The following examples focus on the
situation at a certain instruction.
All variables conceptually begin with their own node in

the graph. (In practice, such nodes need not be represented,
unless connected to others.) The node represents “the object
that the variable points to at this program point”.

x zy

Aliasing can be induced by various program operations
(e.g., Move, Load, and Store), as seen in our earlier model.
Since we are interested in must-alias, two aliased variables
have to point to the same object—their nodes can be merged
if a Move instruction, x = y, is encountered:

x,y z

This collapsing of nodes is responsible for compact en-
coding of equivalence relations: two variables are computed
to be aliases iff1 they belong in the same node of the alias
graph.
1The statement refers to the must-alias analysis results, not to actual aliasing
during program execution.

If the next instruction is a Store, x.f = z, the previous
graph will get propagated—i.e., copied. Subsequently, the
Store will add an edge to the graph, signifying that the field,
f, of the object pointed by x will point to the object that z
points to:

x,y z
f

A subsequent Load operation, z = y.g,2 will inherit the
alias graph of its predecessor and will modify it. Variable
z is removed from its old node (z no longer points to this
abstract object), a new node for z is created, and the nodes
are linked, to indicate that z now points to the same object as
y.g. The empty, former node of z will be garbage collected
if no other paths can reach it in the alias graph.

On the other hand, when an access path can still reach the
emtpy node, the empty node provides useful information. It
represents “the object that an access path points to at this
program point”. Empty here doesn’t describe the lack of
information–just the lack of a local variable pointing to this
abstract object.

x,y

z

f

g

The Load operation shows that our alias graph, although
intended to abstractly represent a real heap, behaves quite
differently: a load from a field can introduce new objects, as
well as update fields of existing objects.

Generally, the alias graph captures compactly all aliasing
relationships among access paths. Maintaining the graph
across program instructions is simple, as in the above ex-
amples. Graph manipulation merely has to observe some
invariants:
• Two variables are in the same graph node iff the analysis
reports them to be aliased. (Since alias classes are disjoint,
the variables in different nodes are also disjoint.)

• Apath in the graph represents a set of access paths, starting
from a non-empty node (that denotes the base variables of
the access paths) and extended with the field labels along
the path’s edges. If two paths in the graph reach the same
node, all access paths they represent must be aliased.
For illustration, consider Figure 2, which shows the alias

graph after line 31 of our example in Section 2.
The graph concisely represents a set of alias rela-

tionships that hold at that program point: b1.container
2The example sequence of actions described is contracted for brevity. Our
implementation works on a static single assignment (SSA) intermediate
form, so this exact scenario will never arise, since z has had its value read
earlier and its single assignment has to dominate its use.
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b1 a1

a2

container

member

member

Figure 2. Example alias graph data structure.

∼ a2, a1.member ∼ b1, and a2.member ∼ b1. An infi-
nite number of other alias pairs are represented implic-
itly: a1.member ∼ a2.member, a1.member.container ∼ a2,
a1.member.container.member∼ b1, a1.member.container.member
∼ a1.member, etc.

Overall, the alias graph satisfies both of our requirements
of Section 3 for an efficient representation. Equivalence rela-
tions are represented compactly: an alias class with n mem-
bers does not needO(n2) space and time for its computation.
Instead, it is represented implicitly, as all the variables in a
node (O(n) space) and all alias graph paths that can reach
a node. Similarly, long (and even infinite) access paths are
represented implicitly as graph paths. The implicit represen-
tation is sufficient for any specific queries (i.e., “are two given
program expressions aliases?”) and for subsequent aliasing
computations, per the algorithms we detail next.

4.1 Main Algorithms
Most of the required must-alias analysis actions (per the
discussion of Section 3) over our data structure are straight-
forward, consisting of copying, additions and removals of
variables and edges, and variable renamings. Standard map-
pings for efficient indexing are required: each target of a
directed edge needs to be able to quickly retrieve its source,
and each program variable needs to quickly map to the node
in which it appears.

For instance, according to the earlier definition of the data
structure, finding all aliases of an access path is simple (but
requires a transitive computation—our graph is a condensed
representation of alias classes):

Algorithm: all-aliases(ap)
• Find the node for the base variable of access path ap, tra-
verse in the forward direction the labeled edges that match
each of the fields of ap to reach a target node.

• Any graph path that reaches the same node corresponds
to an aliased access path, from a base variable adding the
fields labeling the edges. (I.e., traverse k − 1 directed edges
backwards to find access paths of length up to k .)
For instance, in Figure 2, we can find all aliases of length

3 of access path a2.member by traversing edge member from
node a2 (thus reaching the node containing b1) and finding
all paths of length 2 that can reach the same node, also
including the variable(s) in the starting node of the path (e.g.,
b1.container.member).
The more interesting algorithm, as suggested earlier, is

that of intersecting alias graphs—necessary for merging alias
information from predecessor instructions. This is easy to
see as a repeated intersection of two graphs (which is then
iterated by intersecting a third with the result, then a fourth,
and so on). Note that the graphs do not need to contain a
single connected component.

Algorithm: intersect(д1,д2)
• The domain of possible nodes for the result of the intersec-
tion is the cartesian product of nodes ofд1 andд2. For every
two nodes i , j of д1 and д2, respectively, node (i, j), if it ex-
ists in the intersection result, will contain the intersection
of the variables of i and j.

• Nodes are materialized incrementally, according to the
rules below.
1. For every two nodes i , j of д1 and д2, if the intersection

of the variables of i and j is non-empty, add to the inter-
section result a new node (i, j).

2. (Repeatedly) If node (i, j) exists in the intersection result,
then for every label f , if д1 has an edge i → k with label
f , and д2 has an edge j → l , also with label f , then add
to the intersection result (if not already present):
- a node (k, l) (possibly empty);
- an edge (i, j) → (k, l) with label f .

Note that the first step is of linear complexity in the num-
ber of nodes, since empty nodes can be eagerly skipped and
indexing from a variable to the, up to one, node that may
contain it in a different graph is constant-time.

The algorithm considers all possible pair-wise node com-
binations and all possible edges out of node intersections. It
maintains the property that any aliasing relationship (either
variables belonging in the same node, or paths reaching the
same node) in the result also exists in both input alias graphs.

Notably, the intersection of two alias graphs can produce
nodes with empty variable sets, due to the second step of the
algorithm. Empty nodes with no in-edges can be eliminated
eagerly. Empty nodes with in-edges are meaningful in the
output and need to be maintained. To illustrate, consider the
example in Figure 3.

In this case, the empty note denotes that access paths x.f
and z.g are still aliased in the intersection alias graph, even
though they are no longer aliased with any single-variable
access path.

For upper bounds n,v , e in the number of nodes, variables,
and edges in the input alias graphs, respectively, the algo-
rithm has a running time asymptotic bound ofO(n+v+e), i.e.,
linear in all quantities, if one assumes a practically constant-
time indexing scheme from a variable to its node. (Proof
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x,u z

f g

y

x,w z

f g

v

x z

f g

Figure 3. Intersecting alias graphs

sketch: Non-empty nodes are fewer than variables and only
linear cost is incurred when combining non-empty nodes
pair-wise, since each node has a distinct set of variables,
used to index into any node that may intersect that set in
the other alias graph. Empty nodes arise in the result and
are only examined in the input if there is an edge into or out
of them, therefore their number is below e . The number of
edges in the output is at most that in the input (taken as the
union of both input graphs).
Empty nodes with no in-edges are only one instance of

nodes that no longer encode useful access path aliasing. Such
nodes should be garbage-collected for maximum efficiency,
producing a normalized input. The node collection algorithm
is as follows:

Algorithm: gc(д)
• Any node in д containing a single variable and with no
incoming or outgoing edges is eliminated.

• Any node in д containing no variables and with either zero
in-edges or one in-edge and zero out-edges is eliminated.
In all cases covered by the above algorithm, the node does

not encode alias pairs that would disappear with the node’s
removal: either there are no two paths (or variable names)
that reach the node, or the node does not extend other paths
beyond the implicit extension with the same field names that
is already captured by the data structure.

4.2 Use in Practice
Having described the individual steps of an analysis using
a must-alias data structure, we turn our attention to how it
is used in the context of a realistic analysis. Consider the
must-alias analysis of the Doop framework, discussed in Sec-
tion 3. This computes aMustAlias(i, ctx, ap1, ap2) relation,
i.e., aliased access paths at each program point and calling
context. That is, each instruction-context combination is as-
sociated with an alias graph. Initially, conceptually every
possible variable has its own node. (Implementation-wise,
this is represented as an empty graph, requiring no initial-
ization.) Every program instruction is visited and its alias
graph is updated based on the instruction semantics and
the operations that we described earlier. Specifically, every
variable-aliasing instruction merges nodes (creating them if

they only existed implicitly, i.e., they were single-variable
nodes), every load and store instruction creates nodes and/or
edges, every instruction also integrates the alias graphs of
its predecessors, intersecting them if the instruction is a
control-flow merge point. The visit order is not important
for correctness, though it might affect performance (i.e., the
number of steps needed before convergence is achieved).
At a call instruction, the Doop analysis creates a new

instruction-context pair (unless it exists already) for the first
instruction of the callee method and the given context. Max-
imum context depth is a parameter of the analysis and if
reached the call instruction will not be further analyzed. This
is a sound approach for a must-alias analysis, since the aim is
to compute an underapproximation of the alias relationships
that are guaranteed to hold. With our data structure, the
alias graph at the call site is copied to the first instruction in
the callee method and then the usual operations are applied.

The above are repeated until a fixpoint is met. At any given
alias graph, the number of non-empty nodes is bounded by
the number of local variables in the program text. Empty
nodes can arise but gc ensures that the intersection operation,
where merging of states takes place, can never produce more
modes than the union of its inputs graphs: if an empty node
is kept, it is because an incident edge existed in the input,
hence a corresponding node appeared in the input.

4.3 Declarative Implementation
As discussed earlier, the alias graph data structure can be em-
ployed in a must-alias analysis by maintaining alias graphs
per-program-point (i.e., per context-qualified instruction),
and updating them (to incorporate information from their
predecessor instructions) until fixpoint.

The data structure description we have seen so far consid-
ers this update to be a destructive operation. For instance,
after a Move instruction, we saw the nodes of two vari-
ables getting merged. Similar merging can be induced by
information that the analysis discovers while it is executing
(i.e., not directly induced by the semantics of the current
instruction)—e.g., propagated from predecessors.
We have also designed and implemented a declara-

tive/purely functional version of the data structure. The main
reason for the declarative implementation has been fairness
in experimental comparisons. We will compare our opti-
mized implementation against the must-alias analysis of the
Doop framework, implemented in Datalog. Thus, it is desir-
able to also implement a, perhaps not as optimal, declarative
version of the data structure in Datalog. This will allow us
to isolate the effect of destructive updates from the inherent
properties of the data structure.

In the declarative version of the structure, aliased abstract
objects are not merged, but instead associated with each
other. Schematically, we can consider that each variable has
its own node and points to at least one abstract object—at
first the abstract object signifying “whichever object the
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variable got assigned to” (at its single-assignment site):

x

x

(For the declarative implementation, we will represent
abstract objects as squares, to avoid confusion.)
Since we no longer have destructive updates, variables

can point to multiple abstract objects. For instance, after a
Move instruction, x = y, we have:

x

x

y

y

As before, however, a variable can really point to a single
concrete object. Therefore, the two abstract objects that x
points to have to be different abstractions of the same con-
crete object—their equivalence is encoded, but implicitly. It
is easy to check that variables x and y are aliased, in the usual
sense: they both point to the same abstract object.

If the next operation is another Move, z = x, variable z is
made to point to both abstract objects that x points to:

x

x

y

y

z

z

Thus, the declarative data structure is less efficient than
its imperative counterpart: a quadratic representation of an
alias set cannot be precluded, and depends on the order of
alias-inducing instructions. In our example, we could then
assign z, the variable with the most out-edges, to a new
variable, w, then assign w (which now has the most out-edges)
to a new variable, and so on. In practice we expect that this
effect will be mitigated. If the next instruction assigns y to
a new variable, u, then u receives only a single extra edge,
maintaining a more compact representation of the alias set.
The cost, much as in the imperative structure, is that the
alias set is not fully explicit and requires a transitive closure
computation to be materialized.

5 Implementation and Experiments
We implemented an analysis that functionally matches the
published specification [3] of the must-alias analysis in the
Doop framework [5]. Doop is a declarative framework for

Java bytecode analysis, with analyses written in the Datalog
language. In contrast, our implementation is in Java, since
our optimized alias graph data structure has imperative fea-
tures in its full form. Finally, to also eliminate language-level
factors of the Datalog-vs-Java implementations, we also pro-
duced an optimized Datalog implementation, based on our
purely functional data structure.
The three implementations are functionally equivalent,

with very minor variations, due to clear engineering dif-
ferences: The original Datalog analysis has to bound the
access path length for aliases to a finite number, while the
optimized data structure implicitly stores aliases for longer
access paths.
We use a 64-bit machine with an Intel(R) Xeon(R) E5-

2687W v4 (24-cores) CPU at 3.00GHz. The machine has
512GB of RAM. All measurements are single-threaded
(though, as is common, Java runs its garbage collector in ex-
tra threads) and all executions occupy only a small fraction of
the available RAM. We experiment with the DaCapo bench-
mark programs [4] v.2006-10-MR2 and v.9.12-bach under JDK
1.7.0_45. We use the LogicBlox Datalog engine, v.3.10.14.

Speed across benchmarks. Figure 4 shows the performance
effect of our optimized data structure on analyzing the bench-
mark programs. We bounded the access path length (for the
original Datalog analysis) to 3 and the analysis context depth
to 2.
Note that the figure is log-scale. Across all benchmarks,

the difference between the optimized implementations and
the original is typically at least an order of magnitude and
often close to two. The speedup of the two optimized imple-
mentations (vs. the original) is also shown more explicitly
in Figure 5: over half the benchmarks enjoy speedups of
over 20x for both the Java and the Datalog optimized imple-
mentation. The Java version of the data structure achieves a
median speedup of 25.7x (min. 8.4x, max. 68.9x), while the
Datalog version has a median speedup of 24.6x (min. 5.4x,
max. 47.3x). The analysis time typically drops from over ten
minutes to under half a minute.
It is not hard to see why the explicit representation is

not competitive. Figure 6 correlates the number of aliased
access-path pairs (computed by the original analysis) and ex-
ecution time. (This applies to context-qualified access paths,
in the application and libraries alike, as long as the library
code is reachable from application code with the given con-
text depth.) This metric reflects the size (in tuples) of the
corresponding relation in the Datalog database. It clearly
suggest that maintaining access path relationships explicitly
can prove quite costly.

Varying access-path length. To further see the perfor-
mance advantage of the optimized representation of must-
alias information, one can vary the maximum access path
length allowed for computations of the original, explicit
(Datalog) implementation. Figure 7 shows how running time
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Figure 4. Execution time (sec.) of the analysis. We only show the numbers for the Java and Datalog naive versions, to avoid
crowding the chart.

Figure 5. Speedup of the two analyses employing optimized data structure.

varies for maximum access path lengths of 2, 3 (same as in
Figure 4), 4 and 5. The numbers are for the xalan benchmark.
The speedup readily grows to over 75x for an allowed access
path length of 5. The optimized Datalog implementation is
shown as a baseline although it should be (and is) largely
unaffected by the change of maximum access path length.

Varying context depth. Similar observations can be made
by varying the context depth of the analysis. As seen in
Figure 8, although the running time of the optimized im-
plementation grows slowly, the running time of the explicit

representation of alias relationships gets dramatically higher.
For a context depth of 4, the explicit representation did not
terminate after one-and-a-half hour.
Recall the two claimed benefits of the optimized repre-

sentation: long access paths are represented implicitly, and
equivalence classes are represented with linear space and
time complexity, instead of quadratic. It is the latter factor
that comes into play when context depth increases: alias sets
grow in size, by exploiting inter-procedural inference (e.g.,
aliasing established at the caller and propagated through
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Figure 6. Number of pairs of (instruction-and-context-
qualified) access paths that must alias vs. analysis time.

Figure 7. Execution time when varying maximum access-
path length. Optimized Datalog running time given as a
baseline.

Figure 8. Execution time when varying maximum context
depth.

formal arguments) in addition to local instructions.
In all, the optimized representation fulfills its promise

of a much more economical representation of must-alias
(equivalence) relations.

6 Related Work
There are several approaches in the literature that present
must-analyses in the pointer analysis setting or employ them
in a may-analysis. Additionally, there are several approaches
that integrate efficient data structures in the representation
of points-to information.

Data Structures and Heap Abstractions. Our optimized
data structure is (partly) based on the observation that must-
alias sets are equivalence classes. This is not the first time
that a data structure that efficiently implements equivalence
classes has been used to speed up pointer analysis. Most
notably, a Steensgaard-style (or unification-based) [19] anal-
ysis computes may-point-to sets that are equivalence classes.
This means that points-to sets are disjoint—if two points-to
sets are found to possibly overlap, they get unified. This
loses precision (relative to a standard subset-based points-to
analysis) but enables the algorithm to use union-find trees
for a very efficient representation.
Another optimized data structure often used in pointer

analysis is the constraint graph: a graph with nodes denot-
ing pointer variables and an edge between nodes p and q

denoting flow (e.g., a direct assignment) from variable p to
variable q. Online cycle elimination by Fändrich et al. [7]
detects cycles in the constraint graph and collapses all nodes
in a cycle into a representative node, since such nodes will
have identical points-to information. The technique of Nasre
[15] extends such constraint graph reasoning based on the
observation that if two nodes have the same dominator in
the constraint graph, then they are clones: the values flow-
ing to them are (only) those of the dominator node. Several
other constraint graph optimizations are applied off-line
(i.e., before the points-to analysis runs). Prime examples of
such techniques are Rountev and Chandra’s [17] and Hard-
ekopf and Lin’s [10]. (Hardekopf and Lin have also applied
similar ideas in a hybrid online/offline setting [9].) Both of
these techniques perform an off-line detection of equivalent
points-to sets and use this knowledge to eliminate redundant
work in subsequent points-to computations. Our data struc-
ture can be seen as somewhat analogous to constraint-graph
techniques, in the sense that we do not compute the flow of
objects or the fully expanded set of all possible alias pairs.
Instead, we compute the “wiring” (i.e., the alias relationships,
locally, that the program induces) and keep the alias infor-
mation in condensed form, until it needs to be queried by a
client analysis.
Another conceptual relative of our data structure is the

model presented by Madhavan et al. [14] for modular may
analyses. That model is similar in that it invents abstract
nodes for heap objects that resemble ours (without the
equivalence-class nature). The Madhavan et al. approach
aims to achieve modular reasoning, i.e., to model the heap
effects of a method without knowing its calling environment.
To do so, the approach creates abstract nodes that represent
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concepts such as “whichever object variable x may point
to”. Our data structure has nodes with a similar meaning,
however we also take advantage of the “must” nature of the
analysis to merge nodes, every time the same access path
can reach both.

Must-Analyses for Aliasing. There are several instances
of past work that apply must reasoning in pointer analy-
sis. These mostly serve to paint the landscape of potential
applicability of our data structure.

Ma et al. [13] present an algorithm for null-pointer deref-
erence detection using a context-insensitive may-alias and a
must-alias analysis; the latter is used to increase the precision
of the former, by enabling strong updates when possible.
Nikolić and Spoto [16] present a must-alias analysis that

tracks aliases between program expressions and local vari-
ables (or stack locations, since they analyze Java bytecode,
which is a stack-based representation). The analysis is a
generator of constraints, which are subsequently solved to
produce the analysis results.
Hind et al. [11] present a collection of pointer analysis

algorithms. Among them, the most relevant to this work is
a flow-sensitive interprocedural pointer alias analysis. The
authors optimistically producemust information for pointers
to single non-summary objects.

Emami et al. [6] present an approach that simultaneously
calculates both must- and may-point-to information for a
C analysis. Their empirical results “show the existence of a
substantial number of definite points-to relationships, which
forms very valuable information”—much in line with our
own experience.

Must- information is often computed in conjunction with
a client analysis. One of the best examples is the typestate
verification of Fink et al. [8], which demonstrates the value
of a must-analysis and the techniques that enable it.

An approach for integratingmust point-to reasoning in an
analysis is to propagate such information only at instructions
where we know that the given heap allocation target still
refers to the last object allocated at that site [1]. Thus, an
execution path thatmay create another object at the same site
(such as when reaching the end of the loop) would invalidate
any previous must-point-to facts (i.e., it will stop them from
propagating any further).
Generally, must-analyses can vary greatly in sophistica-

tion and can be employed in an array of different combina-
tions with may-analyses. The analysis of Balakrishnan and
Reps [2], which introduces the recency abstraction, distin-
guishes between the most recently allocated object at an al-
location site (a concrete object, allowing strong updates) and
earlier-allocated objects (represented as a summary node).
The analysis additionally keeps information on the size of the
set of objects represented by a summary node. At the extreme,
one can find full-blown shape analysis approaches, such as
that of Sagiv et al. [18], which explicitly maintains must- and

may- information simultaneously, by means of three-valued
truth values, in full detail up to predicate abstraction: a re-
lationship can definitely hold (“must”), definitely not hold
(“must not”, i.e., negation of “may”), or possibly hold (“may”).
Summary and concrete nodes are again used to represent
knowledge, albeit in full detail, as captured by arbitrary pred-
icates whose value is maintained across program statements,
at the cost of a super-exponential worst-case complexity.
Jagannathan et al. [12] present an algorithm for must-

alias analysis of functional languages. The algorithm adapts
must-alias insights to the setting of captured variables. For
instance, must-alias information for non-summary objects
permits strong updates, which the authors find to improve
analysis precision. We employ must-alias analysis results
quite similarly in applications of our model analysis.

7 Conclusions
We presented a data structure for the its optimized implemen-
tation of must-alias analysis over access paths. The algorith-
mic improvements afforded by the specialized data structure
yield a large performance advantage, often approaching two
orders of magnitude.
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